END SEMESTER EXAMINATION - 2019

Semester - 3rd

Subject Code: FP/1-302

ELEMENTS OF FOOD ENGINEERING -

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

- 1. All questions of PART-A are compulsory.
- 2. Answer any five questions from PART-B.

PART - A

Marks - 25

1. Fill in the blanks : $1\times10=10$

- (a) 230°F is equal to ____ Kelvin.
- (b) The SI unit of coefficient of thermal conductivity is ____.
- (c) The SI unit of heat flux is ____.

[Turn over

83/FPT-302/EoFE-I (3) [Turn over	83/FPT-302/EoFE-I (2)
(iii) Entropy (iv) None of these	(d) Heat engine and heat pump are different.
(i) Pressure (ii) Temperature	isobaric process.
(b) Which of the following is not the intensive variable of a thermodynamic system?	radiation. (c) Constant temperature process is known as
(iii) Density (iv) Temperature	(b) Fourier's law governs heat transfer by
(i) Pressure (ii) Volume	pansion valve belong to vapour compression refrigeration cycle.
(a) Which of the following is the extensive property of a thermodynamic system?	2. Write true or false: (a) Evaporator, compressor, condenser and ex-
Choose the correct answer: 1×5=5	(j) The formula of R 134a is
(j) Work is thermodynamic state variable.	1000
(i) Nusselt number is associated with convective heat transfer.	thermodynamic process then it is known as process.
(h) Liquid ammonia is used in heating purpose.	(h) When there is no net heat change a
(g) Heat pump and refrigerator are different.	(g) The unit of energy in SI unit is
(f) Universal gas constant can be calculated from C_p and C_v .	(e) No net change of volume mulcates process. (f) Carnot engine is not an heat engine.
(e) Temperature gradient and thickness of slab are driving force of conductive heat transfer.	(d) process is the constant temperature process.

- (c) Rate of heat transfer is
- (i) inversely proportional to the temperature gradient
- (ii) directly proportional to the surface area normal
- (iii) inversely proportional to the thickness of the plain slab through which the heat
- (iv) All of these
- (d) Thermodynamic state functions are
- (i) internal energy (ii) pressure
- (iv) All of these

(iii) volume

- (e) Which of the following is not a exchanger? CENTRAL LIBRERY
- (i) Boiler
- (ii) Condenser

6.

- (iii) Pump
- (iv) Car radiator.

PART - B

Marks - 45

- 4 (a) State and explain first law of thermodynamics mathematically.
- (b) How work done can be calculated from first law of thermodynamics?

- In a given thermodynamic process there is a an expansion or compression heat transfer gain of 1055 KJ and an internal energy increase of 210 KJ. Determine the work done and state whether the process is
- S (a) State and explain Zeroeth law of thermodynamics.
- (b) Explain heat capacities and their relationship.
- CEMIRAL HISTORICA TECHNOLOGY (c) A refrigerator maintains a food compartment at 2°C by removing heat from it at a rate of the refrigerator is 2.5 kW. Determine 420 kJ/min. If the required power input to
 - (a) COP of the refrigerator
 - (b) The rate of heat rejection to the room that houses the refrigerator.
- (a) State and explain the Second law of thermodynamics. What is Carnot engine
- (b) State and explan the function of a heat engine and heat pump in context to Second law of thermodynamics.
- <u></u> Find the COP of a refrigeration system if work input is 75 KJ/Kg and refrigeration effect produced is 150 KJ/Kg of refrigerant flowing.

S

4

- (a) State and transfer. explain Fourier's law of heat
- (b) Give the mathematical expression of thermal resistance and thermal conductance
- <u></u> An interior wall of a furnace is maintained temperature of the outer wall is 200°C K value of wall material is 0.4 W/mK. The cm thick, 1 cm wide and 1.5m broad. The at a temperature of 900°C. The wall is 60 Determine the following: CENTRALLIBER
 - (i) Heat flow through the wall
- (ii) Thermal conductance to heat flow.
- 00 A cold storage has a wall comprising 11 cm brick store is maintained at -18°C and mean tempera-By considering unit area determine: cork are 0.69, 0.76 and 0.043 W/m°C respectively. ture of the outside surface of the wall is 20°C on the outside, then 7.5 cm of concrete and then The thermal conductivites for brick, concrete and 10 cm cork. The mean temperature within the GIVERAL INSTITUTE
- (i) The thermal resistance
- (ii) Thermal conductance and
- (iii) Rate of heat loss through the wall. 9

(a) Define Nusselt number. Is it dimensionless with (T-X) diagrams. flow and counter current flow heat exchanger quantity? Draw and explain the concurrent

9

- (b) A fluid of temperature 15°C is flowing over a flat surface maintained at 152°C. If the 0.20 m² and the rate of heat transfer from the cross sectional area of the flat surface is the convective heat transfer coefficient. flat surface to the fluid is 800W, calculate
- 10LOG A pipeline of 150/160 mm diameter carries steam. The pipe is insulated with a 0.03m temperature of insulation to 80°C. Find the conductivity of the pipe material is 50 W/mK. conductivity of 0.20 W/mK where therma thick layer of material with a thermal is given as 120°C. rate of heat loss from a length of 1m of pipe Insulation of pipe reduces the external line. The temperature of the inside surface
- (b) State and explain Stefan-Boltzmann's law of radiation. What is black body? Express mathematically LMTD. 2+1+1=4

3

9

11. (a) Explain Vapour Compression Refrigeration Cycle. What are tons of refrigeration?

4+1=5

- (b) Prove the following relationship: $(COP)_p = 1/(COP)_E = (COP)_R + 1.$
- 12. Estimate the convective heat transfer coefficient of a meat block being frozen between refrigerated plates with plate temperature at 30°C. It took a product 23 minutes to freeze in the plate freezer. The following data are available.

Initial freezing temperature = -2° C

Latent heat of fusion = 280 KJ/Kg

Thickness of the food product = 20 mm

Density of the food material = 880 Kg/m³

Thermal conductivity = 1.5 W/mK

Temperature of the surrounding medium = -30°C.

Consider the meat block of infinite slab where shape constants P and R are 1/2 and 1/8 respectively.

83/FPT-302/EoFE-I

70(W)