2013

(December)

FOOD PROCESS EQUIPMENT DESIGN

Paper: FPT 702

Full Marks: 100

Pass Marks: 30

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Name the common types of mechanical devices for grain handling 4
 - (b) Give the important factors on which the selection of material handling machines and conveyors depend.

- (c) Explain briefly the construction and mechanisms of transport of the following conveyors 5+5=10
 - (i) Belt Conveyor
 - (ii) Pneumatic Conveyor
- 2. (a) List the important factors on which the capacity of a belt conveyor depend. 6
 - (b) Explain the advantages and disadvantages of screw conveyor. 6
 - (c) 15 tonne/h of boiler ash is to be transported to the ash pond by a horizontal screw conveyor. With the following operational and material data, specify a suitable screw arrangement for the service.

Data:

Bulk density of the material = 1400 kg/m^3 Filling Co-efficient = 0.125

 $\frac{\text{Lead of the Screw (Screw pitch)}}{\text{Diameter of the screw}} = 0.8$

Speed of the screw shaft = 30 rpm

- 3. (a) Briefly explain with neat diagram the working principle of vibratory air screen cleaner. 6
- (b) During evaluation of an air screen grain cleaner with 2 screens 250g samples were collected for analysis of clean seed fraction from different outlets. The data are presented in the following table. Calculate the cleaning efficiency of the cleaner.

Sample fraction	Feed g	Clean grain outlet, g	moneyer by director	September 19 Septe	Undersize outlet, g
Cleaned Seed, g	231.25	246.5	1.25	4.5	2.0
Impurities g	18.75	3.5	248.75	245.5	248.0

- (c) Name the two important factors which influence the design of an air screen grain cleaner.
- 4. (a) How are heat exchangers classified based on flow arrangement?
 - (b) Derive an expression for the LMTD in a counter flow heat exchanger. 8

(c) Steam enters a counter flow heat exchanger, dry saturated at 10 bar and leaves at 350°C. The mass flow rate of the steam is 720kg/min. The hot gas enters the exchanger at 650°C with mass flow rate of 1320 kg/min. If the tubes are 30mm diameter and 3m long, determine the number of tubes required. Neglect the resistance offered by metallic tubes. Use following data:

For steam
$$T_{SAT} = 180^{\circ} C \text{ (at 10 bar)}$$

 $C_{p,s} = 2.71 kJ/kg.K$, $h_i = 600 W/m^2.K$
For gas $C_{p,g} = 1kJ/kg.K$, $h_o = 250 W/m^2.K$

- 5. (a) Sketch the temperature variations in parallel flow and counter flow heat exchangers. 4
 - (b) What is fouling? Why are fouling factors taken into account in the design of heat exchangers?

nomagnatis woll

4

Derive an expression for the LMTD in a

- (c) A two shell pass and four tube passes heat exchanger is used to heat glycerin from $20^{\circ}C$ to $50^{\circ}C$ by hot water, which enters thin walled 20mm diameter tube at $80^{\circ}C$ and leaves at $40^{\circ}C$. The total length of the tube in the heat exchanger is 60m. The convection co-efficient on shell side is $25W/m^2$ K and that on water (tube) side is $160 \ W/m^2$ K. Calculate the rate of heat transfer in the heat exchanger
- for clean surfaces of tubes,
- (ii) After fouling with fouling factor of $0.0006 \ m^2 \ K/W$ on outer surface of tubes.
- 6. (a) What is effectiveness of a heat exchanger?
 Give the expression for NTU.
 - (b) 1000 kg/h of distilled water at 50°C enters a single Pass Cross-flow heat exchanger and leaves at 40°C. The heat is transferred to raw water entering at 35°C and leaving at 40°C. Calculate the area of the heat exchanger if the fluids on both sides are unmixed and the overall heat transfer coefficient is 1000 W/m².K.

- (c) A chemical having specific heat of $3.3 \, kJ/kg.K$ at a rate of $20,000 \, kg/h$ enter a parallel flow heat exchanger at $120^{\circ}C$. The flow rate of cooling water is $50,000 \, kg/h$ with an inlet temperature of $20^{\circ}C$. The heat transfer area is $10m^2$ and overall heat transfer co-efficient is $1050 \, W/m^2.K$. Find
- (i) The effectiveness of the heat exchanger,
- (ii) Outlet temperature of water and chemical,

Take C_p of water as 4.186 kJ/kg.K. 8

7. Write short notes on:

 $4 \times 5 = 20$

- (i) Screw Conveyors
- (ii) Shell and tube heat exchanger
- (iii) Bucket Elevators

unmixed and the overall heat transfer co-

(iv) Seed grader