Total number of printed pages-3

53 (FPT 503) FPEN

RAL LIBRAD

OF TE

2021

FOOD PROCESS ENGINEERING

Paper : FPT 503

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	(a)	What is meant by Dehydration? 5
0	(b)	Compare and contrast dehydration and drying. 5
	(c)	Describe briefly the principles of drying. 5
	(d)	How do you evaluate the rate of drying from drying data? 5

2. (a) What do you mean by Equilibrium Moisture Content (EMC)? 5

Contd.

(b)	Discuss	the	importance	of	EMC	for	
•	agricultu	are fo	ood materials		20 - P	5	

- (c) What is the significance of EMC-RH data? 5
- (d) What is Henderson's equation? 5

3. Define the following terms : $5 \times 4 = 20$

(a) Moisture content on wet basis

(b) Free Moisture

- (c) Unbound Moisture
- (d) Bound Moisture.
- 4. The result of EMC determination is given below. 20

	Temp.	RH	EMC
Experiment No.1	60°C	40%	8.65% db
Experiment No. 2	30°C	50%	10.51% db

For the above data, compute the constant C and n for Henderson's equation.

53 (FPT 503) FPEN/G 2

humidity and percentage humidit	ative y. 5
(b) How a humidification of air is do	ne? 5
(c) Describe typical humidifica equipment.	tion 5
(d) What are the various application humidification operation in the processing?	is of food 5
(a) How do you classify the dry	ying 10
equipment	
 (b) Describe with a neat diagram, a fr dryer and its application in F processing. 	reeze Food 10
 (b) Describe with a neat diagram, a fr dryer and its application in F processing. Write short notes on : 5×4 	reeze Food 10 ¥=20
 (b) Describe with a neat diagram, a fr dryer and its application in F processing. Write short notes on : 5×4 (a) Hysteresis effect 	reeze Food 10 4=20
 (b) Describe with a neat diagram, a fr dryer and its application in H processing. Write short notes on : 5×4 (a) Hysteresis effect (b) Degree of Saturation 	reeze Food 10 4=20
 (b) Describe with a neat diagram, a fr dryer and its application in H processing. Write short notes on : 5×4 (a) Hysteresis effect (b) Degree of Saturation (c) Spray dryer 	reeze Food 10 4=20
 (b) Describe with a neat diagram, a fr dryer and its application in H processing. Write short notes on : 5×4 (a) Hysteresis effect (b) Degree of Saturation (c) Spray dryer (d) Cabinet Dryer. 	A=20

Total number of printed pages-5

53 (CE 503) STA-II

AL LIBRAR

2021

STRUCTURAL ANALYSIS-II

Paper : CE 503

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Define statically indeterminate structures. And give the classification of indeterminate structures. 3
 - (b) Determine the degree of static indeterminacy for the following: 6

(i) A

Contd.

 (d) Determine the moments over the beam in figure-1 and draw the bending moment diagram by three moment theorem. Also calculate the reactions at the supports and draw the shear force diagram.

53 (CE 503) STA-II/G 2

2. Analyse the frame shown in figure-2 by slope deflection method. Draw BMD and SFD. 20

3. Using moment distribution method, analyse the beam shown is figure-3. Support B sinks by 5 mm below A and C. Take $E = 200 \ GPa$ and $I = 400 \times 10^6 \ mm^4$. 20

Contd.

5. (a) Define the following:

(i) Fatigue and (ii) Creep.

(b) A masonry dam of trapezoidal section is 12 m high. It has a top width of 1.75 m and bottom width of 6.75 m. The water face of the dam has a batter of 1 in 12. If the water level is at the top of the dam, find the maximum and minimum normal stresses at the base. Masonry weighs 22500 N/m³ and water weighs 9810 N/m³.

5

53 (CE 503) STA-II/G

4

- 6. (a) A fixed beam of span 'l' carries a point load 'W' eccentrically on the span at a distance 'a' from the left end and 'b' from the right end. Find the fixing moments at the ends of the beam.
 - (b) Define the following:

(i) Orthogonal frame and

(ii) Stiffness factor.

53 (CE 503) STA-II/G

5

100

4

LLIBRAR

UTE

1