Total number of printed pages-7

53 (FPT 303) FLMC

2014

FLUID MECHANICS

Paper : FPT 303 Full Marks : 100 Pass Marks : 30

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) What is a fluid ? How are fluids classified ? 1+3=4

- (b) What is the difference between an ideal and real fluid ? 3
 - (c) Explain briefly the following terms :

 $1.5 \times 4 = 6$

- (i) Mass density
- (ii) Weight density
 - (iii) Specific volume
 - (iv) Specific gravity

Contd.

(d) What is kinematic viscosity? What are its units?	
(e) Define steady, uniform, rotational and irrotational flows. 5	
(a) Define the following terms : 5	
(i) Velocity potential	
(ii) Stream function.	
(b) What is an impulse-momentum equation. 2	
(c) Differentiate between a laminar flow and a turbulent flow.	
(d) Explain the term boundary layer. 2	
(e) Write any five characteristics of a boundary layer. 5	
 (f) Define momentum thickness and energy thickness. 3 	
(ii) Weight density	

53 (FPT 303) FLMC/G

3. (a) The space between two parallel plates 5mm apart is filled with crude oil. A force of 2N is required to drag the upper plate at a constant velocity of 0.8m/s. The lower plate is stationary. The area of the upper plate is $0.09 m^2$. Determine : 6

(i) The dynamic viscosity, and

- (ii) The kinematic viscosity of the oil in stokes if the specific gravity of oil is 0.9.
- (b) Determine the mass density, specific volume, and specific weight of a liquid whose specific gravity is 0.75.
 - (c) Find the height of water column corresponding to a pressure of $100 kN/m^2$.

(d) A plate having an area of $0.6m^2$ is sliding down the inclined plane at 30° to the horizontal with a velocity of 0.36 m/s. There is a cushion of fluid 1.8mm thick between the plane and the plate. Find the viscosity of the fluid if the weight of the plate is 280N.

3

53 (FPT 303) FLMC/G

Contd

4. (a) In a three-dimensional incompressible flow, the velocity components in y and z-directions is fourted to drag the upp are at a

$$v = ax^{3} - by^{2} + cz^{2}$$
$$w = bx^{3} - cy^{2} + az^{2}x.$$

Determine the missing component of velocity distribution such that continuity equation is satisfied. 5

- A pipe 200m long slopes down at 1 in 100 *(b)* and tapers from 600mm diameter at the higher end to 300mm diameter at the lower end, and carries 100 litres/s of oil (sp. gravity 0.8). If the pressure gauge at the higher end reads $60 kN/m^2$, determine : 8
 - (i) Velocities at the two ends
 - (ii) Pressure at the lower end.

down the inclined plane at 10° to the

53 (FPT 303) FLMC/G

53 (FPT 303) FLMC/G

(c) In a smooth inclined pipe of uniform diameter 250mm, a pressure of 50kPa was observed at section (1) which was at elevation 10m. At another section (2) at elevation 12m, the pressure was 20kPa and the velocity was $1 \cdot 25m/s$. Determine the direction of flow and the head loss between these two sections. The fluid in the pipe is water. The density of water at $20^{\circ}C$ is $998kg/m^{3}$.

5. (a) Derive the continuity equation in Cartesian co-ordinates. 10

(b) Derive Navier-Stokes equations of motion. 10

- 6. (a) In a circular pipe of diameter 100mm a fluid of viscosity 7 poise and specific gravity 1.3 is flowing. If the maximum shear stress at the wall of the pipe is $196.2 N/m^2$, find :
 - (i) The pressure gradient
 - (ii) The average velocity, and
 - (iii) Reynolds number of flow.

53 (FPT 303) FLMC/G

5

7

Contd.

(b) An oil of viscosity 0.02 poise and specific gravity 0.8 is flowing through 50mm diameter pipe of length 500m at the rate of 0.19 *litre/sec*. Determine :

- (i) Reynolds number of flow
- (ii) Centre-line velocity
 - (iii) Pressure gradient
 - (iv) Wall shear stress.
 - (c) What are characteristics of a laminar and turbulent flow. 5
- 7. (a) A horizontal pipe carries water at the rate of $0.04 \ m^3/s$. Its diameter which is 300mm reduces abruptly to 150mm. Calculate the pressure loss across the contraction. Take the co-efficient of contraction = 0.62. 7
 - (b) Show that for velocity distribution

5

$$\frac{u}{v} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

the ratio of $\frac{\delta}{\delta^*} = 3$ abloaves 1

53 (FPT 303) FLMC/G

6

(c) Find the ratio of displacement thickness to momentum thickness and momentum thickness to energy thickness for the velocity distribution in the boundary layer given by

$$\frac{u}{v} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

The figures in the margin indicate that w

7

53 (FPT 303) FLMC/G

8