Total No. of printed pages = 3

Et-403/DE/4th Sem/2014/N

DIGITAL ELECTRONICS

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No.1 and any four from the rest.

- 1. (a) Convert $(0.513)_8$ to binary. $7 \times 2 = 14$
 - (b) Convert (15AC)₁₆ to octal.
 - (c) Convert $(126)_{10}$ to excess-3 code.
 - (d) Convert Gray code number 1110110 to binary.
 - (e) Convert $(940)_{10}$ to hexadecimal.
 - (f) Add $(736)_8$ and $(1234)_8$
 - (g) Multiply (1101), by (1011),

[Turn over

- 2. (a) Subtract the following using 2's complement method. $2\frac{1}{2}\times 2=5$
 - (i) 1011_2 from 1000_2
 - (ii) 10110, from 11100,
 - (b) Prove the following : $2\frac{1}{2} \times 2=5$ (i) (A + B) (A + C) = A + BC (ii) B + $\overline{B}A$ = A+B
 - (c) Design the logical equation $y = (A + \overline{B}C)$ (C + AB) using AND and OR gates. 4
- 3. (a) Convert $y = ABC + A\overline{B}D + BC + AD$ into standard SOP form. 4
 - (b) Simplify : f (A, B, C, D) = $\sum m (0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15)$ using K-map. 6

(c) State De-Morgan's theorem and explain it. 4

- 4. (a) What is full adder ? Explain its working principle with its circuit diagram and truth table. 6
 - (b) Explain in brief a 5-bit shift register (any one type) with neat diagram.

30/Et-403/DE

- (c) Classify various secondary memory devices on the basis of their operation. 4
- 5. (a) Using NAND gate, draw a R-S flip-flop circuit and explain its operation principle with truth table.
 - (b) Explain a 4-bit ring counter with proper circuitry.
 - (c) What is multiplexer ? Explain a 8:1 multiplexer with its equation and circuit diagram. 4
- 6. Write short notes on any four : $3\frac{1}{2} \times 4 = 14$

(3)

- (i) Master slave J-K flip-flop
- (ii) A/D converter
- (iii) Seven segment display
- (iv) Alphanumeric code
- (v) Universal logic gates.

30/Et-403/DE

800(Y)