Et-608/DSP/6th Sem/Opt/2017/M

DIGITAL SIGNAL PROCESSING

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Define Laplace transform and find the Laplace transform of the following: 2+(4×2)=10
 - (i) $e^{-\alpha t}\cos wt$
 - (ii) cosh wt
 - (b) Find the inverse Laplace transform of

$$\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$$

2. (a) Prove that if $X(z) = Z \{x(n)\}$, then

$$Z \{n \times (n)\} = -Z \frac{dX(z)}{dz}$$

[Turn over

(b) Find Z-transform of the signal

$$x(n) = \left(-\frac{1}{5}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$$

(c) Find inverse Z-transform of $\frac{1+\frac{1}{2}z^{-1}}{1+3z^{-1}+2z^{-2}}$

5

- Find the DFT of the sample data sequence
 x(n) = {2,1,3,2,1,3} and compute the corresponding amplitude and phase spectrum.
- 4. Define periodic and aperiodic signals. Find whether the following signals are periodic or not.
 - (a) $u(t) \frac{1}{2}$
 - (b) $\cos 60 \pi t + \sin 50 \pi t$

4+5+5=14

5. Define and distinguish between power and energy signals. Find whether the following signal is power or energy signal.

$$x(t) = e^{-3t} u(t)$$

4+6+4=14

- 6. Define Time-invariant and Time-variant systems. The input output equations for two systems are given below:
 - (a) Y(n) = x(n) x(n-1)
 - (b) $Y(n) = x(n) \cos wn$

Determine whether the systems are Time-variant or Time-invariant. $6+(2\times4)=14$

7. Write short notes on any two:

 $7 \times 2 = 14$

- (a) Causal and non-causal systems
- (b) D/A converter
- (c) Applications of DSP
- (d) BIBO systems.