53 (EE 201) BEEN

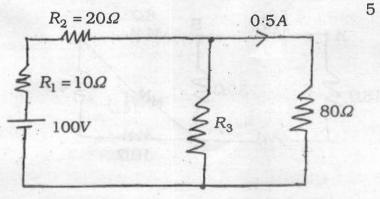
2018

BASIC ELECTRICAL ENGG.

Paper: EE 201

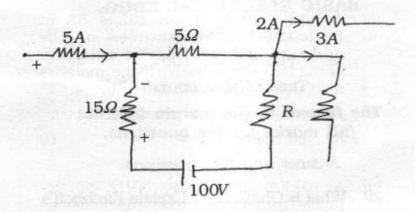
Full Marks: 100

Time: Three hours

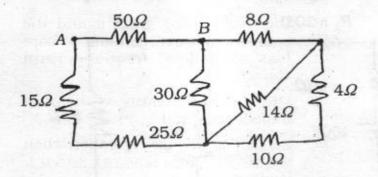

The figures in the margin indicate full marks for the questions.

Answer any five questions.

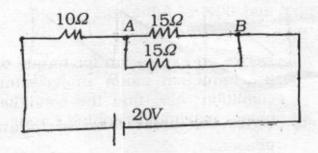
1. (a) What is Ohm's law? Explain Kirchhoff's voltage law with an example.

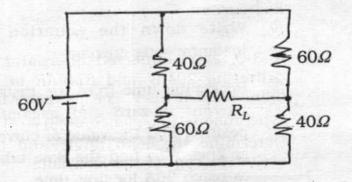

2+3=5

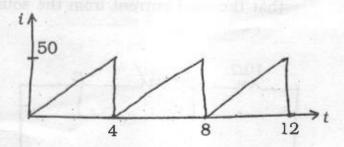
(b) Find the voltage drop across R_1 and R_2 . The resistance R_3 is not specified.



Contd.


(c) The voltage drop across the 15Ω resistance in the following circuit is 30V having the polarity indicated. Find the value of R.


2. (a) What is the resistance between points A and B of the following circuit.


(b) In the following figure what resistance must be shunted across A and B so that the total current from the source is 1.5A.

(c) Use Thevenin's theorem to replace the three-loop equivalent circuit of following figure by a single-loop equivalent circuit in which the identity of R_L is preserved. All resistances are expressed in ohms.

3. (a) Find the form-factor of the following waveform.

- (b) Write the polar form of following phasors. 5
 - (i) -5-6j
 - (ii) -6 + 5j
- (c) A sinusoidal alternating current of 50Hz has maximum value of 120A.

10

- (i) Write down the equation of instantaneous current.
- (ii) Reckoning time from the instant current is zero and becoming positive, find the value of current at 2ms. Also find the time taken to reach 96A for first time.

- 4. (a) Two impedances $Z_1 = 8 + 6j\Omega$ and $Z_2 = 3 4j\Omega$ are connected in parallel. If the total current of the combination is 25A, find the current taken and power consumed by each impedance.
 - (b) A circuit is composed of a resistance of 6Ω and a series capacitive reactance of 8 ohms. A voltage $e(t) = 141 \sin 377t$ is applied to the circuit.
 - (a) Find the complex impedance
 - (b) Determine the effective and instantaneous values of the current
 - (c) Compute the power delivered to the circuit.
- 5. (a) Draw the phasor diagram of a balanced 3-phase system showing line voltages and phase voltages in case of starconnection.
 - (b) If the phase voltage of one phase of a Y-connected three-phase balanced source is $\overline{V}_{an} = 120 \angle 0^{\circ}$. What are the expressions for the other two phase voltages? What is the expression for the line voltage?

- (c) A 208V, three phase power supply is connected to star-connected load. All the phase impedances are identical and equal to $(5+8.66j)\Omega$. Find the line currents and power absorbed by each phase.
- 6. (a) What is magnetomotive force? How does it differ from electromotive force?

 How is it similar?

 5
 - (b) A long straight wire located in air carries a current of 4A. Assume the relative permeability of air is unity. Find the value of the magnetic field intensity at a distance 0.5m from the center of the wire.
 - (c) An iron ring of cross-sectional area 6cm² is wound with a wire of 100 turns and has a saw cut of 2mm. Calculate the magnetising current required to produce a flux of 0·1 mWb if mean length of magnetic path is 30cm and relative permeability of iron ring is 470:

- 7. (a) With the help of a neat diagram, show how a single phase energy meter, main switch and a distribution box (with 4 subcircuits) are connected in a domestic wiring system.
 - (b) How will you use a PMMC instrument which gives a full scale deflection at 50mV potential difference and 10mA current as—
 - (i) Ammeter 0-10A range
 - (ii) Voltmeter 0-250V range

 Draw the circuit diagrams for each case and clearly show the necessary steps.

 5+5=10
 - (c) A sinusoidal voltage is $e(t) = 170 \sin(377t + \pi/3) \text{ volt}$ What is the value of frequency of this voltage?