Total number of printed pages-7

53 (EE 201) BEEN

Contd.

2017

BASIC ELECTRICAL ENGINEERING

Paper : EE-201

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Define the following terms : $1 \times 6 = 6$

- (i) Active element
- (ii) Passive element
- (iii) Non-linear circuits
- (iv) Bilateral circuits

(v)	Mesh
(vi)	Loop.

- (b) State and explain Kirchhoff's Current law and Kirchhoff's Voltage law with necessary diagrams. 3+3=6
- (c) Find the Current I for the given network—
 (use Delta/Star or Star/Delta transformation only).

2. (a) Write the statements of Superposition and Reciprocity theorem and explain. 5+5=10

(b) Using Superposition theorem, find the power delivered in the 10Ω resistor in the circuit given below : 10

 (a) Determine the Current I in the given circuit using Thevenin's equivalent circuit.

53 (EE 201) BEEN/G

3

Contd.

(b) In the following circuit, calculate the Current I. 10

4. (a) Define the following terms $-1 \times 5=5$

- (i) Peak value
- (ii) Symmetrical wave
 - (iii) Time period
 - (iv) RMS value
 - (v) frequency of Sinusoidal AC wave.

5

(b) Prove that, for a Sinusoidal AC wave, average value in a full cycle is zero.

4

53 (EE 201) BEEN/G

(c) A pure inductance of 318mH is connected in series with a pure resistor of 75Ω . The circuit is supplied from 50Hz source and the voltage across 75Ω resistance is found to be 150V. Calculate the supply voltage and the phase angle. 10

5. (a) Prove that, for a balance star connected $3 - \phi$ system — 10 $V_L = \sqrt{3} V_{ph}$

Where, V_L = Line Voltage V_{ph} = Phase Voltage

(b) Two currents represented by — 10 $i_1 = 50 \sin 314t$ and $i_2 = 30 \sin (314t - \pi/6)$

are fed into a common conductor. Find the expression for the resultant current in the form —

 $i = I_m \sin(314t \pm \phi)$

53 (EE 201) BEEN/G

Contd.

- 6. (a) An iron ring of cross-sectional area 6cm² is wound with a wire of 100 turns and has a saw cut of 2mm. Calculate the magnetising current required to produce a flux of 0.1 mwb if mean length of magnetic path is 30cm and relative permeability of iron ring is 470.
 - (b) Explain the following : 2+2=4
 - (i) Self-inductance
 - (ii) Magnetic intensity.
 - (c) Mention three similarities and dissimilarities between Magnetic and Electric circuits.
 3+3=6
- 7. (a) What is the significance of shunt in ammeters ? Explain how the range of an ammeter can be extended. 5
 - (b) A moving coil instrument has a resistance of 10Ω and gives full scale deflection when carrying a current of 50mA. Show how it can be adopted to measure voltage upto 750V and currents upto 1000A. 5

53 (EE 201) BEEN/G

6

(c)

What are the different types of internal wiring usually employed in industries and house ? With the help of a neat diagram show, how a single phase energy meter, main switch and a distribution box (with 4 sub-circuits) are connected in a domestic wiring system. 10

500