2013

(May)

RADAR AND ELECTRONIC NAVIGATION SYSTEMS

Paper: EC 810

Full Marks: 100

Pass Marks: 30

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions

- 1. a) What is meant by unambiguous range in Radar? Show that the unambiguous range is given by $Ru = C\tau/2$; where ' τ ' is the delay in pulse transmission. 4+6
 - b) Show that two targets located at ranges ${}^{\prime}R_{1}{}^{\prime}$ and ${}^{\prime}R_{2}{}^{\prime}$ can be resolved exactly if the range resolution is given by $\Delta R|_{min} = c/2B$; where 'B' is the bandwidth of the radar.

c) Consider a radar system with unambiguous range of 100 km and a bandwidth of 0.5MHz. Compute (i) pulse repetition frequency (prf) (ii) pulse width (τ) .

2+2

- 2. a) Discuss the operation of Pulse-Doppler radar.
 - b) Show that for CW Doppler radar; the output from the mixer/detector is given by $\frac{A}{2}\cos\left[\frac{4\pi}{\lambda}\frac{dR}{dt}\right];$ where the symbols have their usual meaning.
 - Prove that the Doppler frequency for a target moving with a radial velocity 'dR/dt' is given by $fd = \pm \frac{2(dR/dt)}{\lambda}$; where ' λ ' is the wavelength of radar signal.
- 3. a) Deduce the radar range equation given by $Rmax = \left[\frac{P_T.G.\sigma.Ae}{(4\pi)^2 Smin}\right]^{1/4}; \text{ where the symbols}$ have their usual meaning.

- b) A certain rader has a bandwidth of 0.4MHz and the average time between false alarm is 30 min. What is the probability of false alarm and the threshold-to-noise power ratio (V_T^2/ψ_0) ?
 - c) Show that a single-delay line is equivalent to a high-pass filter. How the delay can be achieved in a radar-based system?

8+4+8

- 4. a) Describe the operation of a MTI-based radar.
 - b) Deduce the frequency response of singledelay line canceler in connection with MTI-radar. What is blind speed?
 - c) What methods are available for reducing the detrimental effects of blind speed?

 8+7+5
- 5. a) What is Rayleigh criterion for smooth surface?
 - b) Show that the effect of multipath propagation on radar range equation is to change the return power dependance on range to R^{-8} rather than R^{-4} relationship found in free space.

- 6. a) What is an analytic radar signal? How does it differ from a real radar signal?
 - b) Find the response of an analytical network fed by an analytical input.
 - c) Compute the maximum instantaneous SNR at the output of a linear filter whose impulse response is matched to the signal $x(t) = e^{-(t^2/2T)}$. 5+10+5
- 7. Write short notes on any two of the following:

10 + 10

- i) Matched filter SNR.
 - ii) Single-pulse radar ambiguity function.
- iii) Delay estimation using single envelope of a radar-pulse.