Total number of printed pages-11

53 (EC 603) DISP

2018

DIGITAL SIGNAL PROCESSING

Paper : EC 603

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Establish the relation between analog and digital frequency. 5

(b) In the given low-pass RC circuit shown below with $R = 1M\Omega$ and $C = 1\mu F$, determine the equivalent discrete-time expression for the circuit response y(n)when the input is given by x(t) = exp(-2t), and the sampling frequency is 50Hz. 15

(a) Find the impulse response h(n) for each of the causal, discrete-time LTI systems satisfying the following difference equations and also indicate whether each system is FIR or IIR system : 5×3=15

(i)
$$y(n)=x(n)-2x(n-2)+x(n-3)$$

(ii)
$$y(n)+2y(n-1)=x(n)+x(n-1)$$

(iii)
$$y(n) - 0.5y(n-2) = 2x(n) - x(n-2)$$

(b) Find the z-transformation of (i) x(n) = 1(ii) $x(n) = 2^n u(n-2)$. 5

3. (a) An FIR filter (N = II) is characterised by the following transfer function :

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$

Determine the magnitude response and hence prove that the phase and the group delays are constant. 10

53 (EC 603) DISP/G

(b) Consider the discrete-time system shown below. For what values of 'k' is the system BIBO stable? 10

4. (a) Design a single-pole low pass digital filter with a 3dB bandwidth of 0.2π using bilinear transformation. The analog filter has a system response given by

 $H(s) = \Omega c/(s + \Omega c)$; where ' Ωc ' is the 3dB bandwidth of the analog filter.

10

53 (EC 603) DISP/G

3

al Pass band edge frequency

(b) A digital low pass filter is to be designed with the following desired frequency response: 10

$$Hd(\omega) = \begin{cases} e^{-j\omega\times 2} ; & -\pi/4 \le \omega \le \pi/4 \\ 0 ; & \pi/4 \le |\omega| \le \pi \end{cases}$$

Determine the filter's coefficients hd(n) if the window function is defined as

$$\omega(n) = \begin{cases} 1 & ; & 0 \le n \le 4 \\ 0 & ; & elsewhere \end{cases}$$

Hence find the frequency response $H(\omega)$ of the designed filter.

- (a) Determine the lowest order of a transfer function Ha (s) having maximally flat low pass characteristics with a 1dB cutoff frequency at 1kHz and a minimum attenuation of 40dB at 5kHz.
 - (b) Design a digital LPF (Butterworth) using impulse invariant method to meet the following specifications: 12
 - (i) Pass band edge frequency = 1.25kHz

- (ii) Stop band edge frequency = 2.75kHz.
- (iii) Pass band ripple $\leq 0.5 dB$
- (iv) Stopband attenuation ≥15dB
 Sampling frequency is 10kHz.
- 6. (a) Compute the DFT of the sequence

$$x(n) = \{4, 4+3i, 2, -4\}$$
 8

- (b) Draw the complete signal flow graph of 8 point DIF-FFT algorithm. 12
- 7. (a) Draw the block diagram of linear convolution using DFT. 6
 - (b) What are the major factors that influence our choice of a specific realisation?
 - (c) Write a short note on Frequency sampling realisation of FIR filter. 8
- 8. (a) Develop a Direct Form II structure with combined common delay for the following: 10

$$y(n) = 2x(n) - 3x(n-1) - x(n-2) + 1.5x(n-3)$$

+5x(n-4)-2.5y(n-1)+2y(n-2)-1.5y(n-3).

- (b) A digital system is given with the difference equation . y(n) = 0.9y(n-1) + x(n) with x(n) = 0and initial condition y(-1) = 4. Explain zero input limit cycle effect. 10
- 9. (a) Find the circular convolution $y_c(n) = x (n) * h (n)$ where $x (n) = \{1, -2, 4, 15\}$ and $h (n) = \{3, 0, -2, 5\}$
 - (b) Consider the transfer function of an analog filter $H(s) = (s+3)/s^2 + 4s + 13$. Now design the corresponding digital filter using impulse invariant method, consider sampling time = 0.1s. 10
 - (c) A system has impulse response given by $h(n) = -0.25\delta(n+1) - 0.5\delta(n) = 0.25\delta(n-1)$ Is the system causal? 3
 - 10. (a) Find the inverse z-transform of

$$X(z) = \frac{z(z^2 - 4z + 5)}{(z - 3)(z - 1)(z - 2)}$$

for ROC (i) 2 < |z| < 3, (ii) |z| < 110

53 (EC 603) DISP/G

6

- (b) What are the advantages of digital filters over analog filters? 5
- (c) Why are FFT techniques so important in DSP? 5
- 11. (a) What are the desirable and undesirable features of FIR filters? 5
 - (b) Why FIR filters are known as all-zero filters? 5
 - (c) Write short notes on any two from the following: 5+5
 - (i) Gibbs phenomenon
 - (ii) Overlap-add and Overlap-save methods
 - (iii) Design of FIR filter using window method.
- 12. Multiple choice type questions. Choose the correct alternative : 10×2=20
 - (i) The output of a causal system :
 - (a) does not depend on the input
 - (b) depend on the present and future input

53 (EC 603) DISP/G

7

- (c) does not depend on future input
- (d) does not depend on the past and future input.
- (ii) Advantage of DSP over analog signal processing is:
 - (a) greater accuracy
 - (b) flexibility in configuration
 - (c) digital realisation is cheaper
 - (d) all of these.

(iii) The system y(n) = x(n) + 3x(n-1) is

- (a) static
- (b) linear
- (c) dynamic
- (d) non-linear

(iv) The system y(n) = x(n) + nx(n-1) is

- (a) non-causal and time invariant
- (b) causal and time variant
- (c) causal and time invariant
- (d) non-causal and time variant.

53 (EC 603) DISP/G

(v) Which of the following is N-point DFT of x (n):

(a)
$$X(k) = \sum_{k=0}^{N-1} x(n) \exp(-j2\pi kn \times N)$$

(b)
$$X(k) = \sum_{k=0}^{N-1} x(n) \exp(-j2\pi kn/N)$$

(c)
$$X(k) = \sum_{k=0}^{N-1} x(n) \exp(+j2\pi kn/N)$$

- (vi) The Fourier transform of a discrete and periodic sequence is
 - (a) discrete and periodic
 - (b) continuous and periodic
 - (c) continuous and aperiodic
 - (d) discrete and aperiodic.

53 (EC 603) DISP/G

9

- (vii) Which of the following error (s) arise (s) due to quantisation of numbers?
 - (a) Input quantization error
 - (b) Product quantisation error
 - (c) Coefficient quantisation error
 - (d) All of these.
 - (viii) Which of the following is not a power signal?
 - (a) unit step
 - (b) $exp(j\omega_0 n)$
 - (c) periodic sequence
 - (d) unit ramp sequence.
 - (ix) Consider an analog signal $x_a(t) = 3\cos 100\pi t$. The min. sampling rate required to avoid aliasing is

10

- (a) 100Hz
- (b) 200Hz
- (c) 50 Hz
- (d) 75 Hz.

53 (EC 603) DISP/G

(x) Zero padding indicates:

- (a) Zeros appearing in X(k) sequences
- (b) Value of X(k) are zero
- (c) Dummy zero valued samples added
- (d) None of these.

