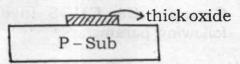
53 (EC 602) VLSI

2018

VLSI

Paper: EC 602


Full Marks: 100

Time: Three hours

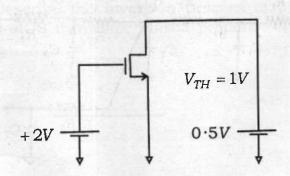
The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) Describe the lithographic sequences required for the following diagram (pattern).

- (b) Write a short note on oxidation process.
- (c) Derive the expression for Drain-to-Source current of an n-MOSFET biased in Triode mode and plot the $I_{DS} \sim V_{DS}$ characteristics.

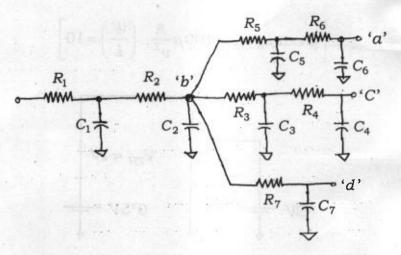
- 2. (a) Draw the cross-bar switch matrix for 4-bit left and right rotation. 5+5
 - (b) Draw the cross-sectional view of Bi-CMOS technology. 4
 - (c) Implement the boolean function in CMOS logic $f(A, B, C) = \overline{A + (B.C)}$ and draw the lumped RC model for charging and discharging path. 2+2+2
- 3. (a) Describe the operation of 1 bit DRAM cell and compare its performance with 1 bit SRAM cell. 8+2
 - (b) Draw the CMOS sechmatics for a 2:1 MUX and corresponding layout. 2+4
 - (c) Describe the operation of n-MOS as a pass transistor.
- 4. (a) Consider the CMOS inverter with following parameters.


$$n \, MOS : V_{TH \, . \, N} = 0.6 V, \quad \mu_n C_{ox} = 60 \, \mu A / v^2, \quad \left(\frac{w}{L}\right)_N = 8$$

$$pMOS: V_{TH.P} = 0.7V, \quad \mu_p C_{ox} = 25 \,\mu A / v^2, \quad \left(\frac{w}{L}\right)_p = 12$$

Calculate the value of switching threshold, if the supply used is 3.3 V.

(b) Calculate the on-resistance of the MOS circuit shown below:


given
$$\mu_n C_{ox} = 100 \mu \frac{A}{v^2}$$
, $\left(\frac{W}{L}\right) = 10$

2

- (c) Write short note on constant voltage scaling.
- (d) Explain the operation of 2-4 bit binary numbers and draw the array base of multiplier architecture. 2+8

5. (a) Calculate Elmore's Delay for the following RC-tree shown as 'a', 'b', 'c', 'd'.

- (b) Explain the logical implementation of 4 bit magnitude comparator with proper explanation.
- 6. (a) Describe the operation of 4 bit × 4 bit

 NOR based ROM array with circuit
 diagram.
 - (b) Draw the layout and schematic for the function $f(A, B, C) = \overline{(A+B).C}$ 6
 - (c) Describe the operation of a CMOS inverter.

- 7. (a) Draw and explain the fabrication steps for n-well CMOS process. 10
 - (b) Explain the logical implementation of Zero/one detector and its operation.

6

(c) Describe the inversion process of an n-MOS transistor biased properly.

4