Total number of printed pages-4

53 (EC 502) DGCM

MRALINST

2019

DIGITAL COMMUNICATION

Paper: EC 502

Full Marks: 100

Time: Three hours

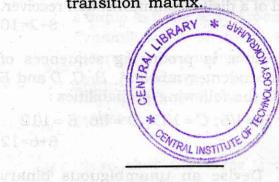
The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) State the impulse sampling for low-pass signals. Why is an LPF required before the sampler? Hence show that the spectrum of the ideally sampled version of x(t) is a periodic repetition of X(f). What is 'aperture effect' in practical sampling? 2+1+5+2=10
 - (b) Derive the expression for maximum SNR_Q in case of sinusoidal signal. Waveform coding is to be done by delta modulator under no slope overload condition (granular noise is present).

10

Contd.


- ". (a) State the operating principle of a predictor block in linear delta modulation.
- (b) Discuss the operation of a DPCM circuit.
- is to be transmitted using a PCM system. If the quantization error of any sample is to be at the most ±1% of the dynamic range of the message signal, determine the minimum value of 'n' for the sampling rate and the corresponding bit rate of transmission process.
- (a) Prove that the error probability for digital baseband signalling is given by $P_e = Q[d/z]$ where 'Q' is the Q-function defined by $Q(k) = \frac{1}{\sqrt{2\pi}} \int_k^\infty exp.[-\lambda^2/2]d\lambda$ and 'd' is the distance metric between the transmitted symbols.
- (b) Discuss the coherent detection of binary ASK (BASK) bandpass signal and hence calculate the minimum error probability for such scheme.

- (a) Calculate the power spectra for a binary FSK (BFSK) signal and hence discuss the result. 7+3=10
- and 10^{-2} volts height, calculate the SNR at the output of a matched filter. Assume the channel noise to be white and with a PSD of 10^{-8} W/Hz. Explain the role of a matched filter at the front end of a digital communication receiver. 8+2=10
- 5. (a) A source is producing sequences of independent symbols A, B, C, D and E with the following probabilities:

$$A = 1/2$$
; $B = 1/6$; $C = 1/12$; $D = 1/6$; $E = 1/12$
6+6=12

- (i) Devise an unambiguous binary code for these symbols.
- (ii) Compute the coding efficiency of your code.
- (b) A DMS 'S' has an alphabet $\{S_0, S_1\}$ with corresponding probabilities $p(S_0) \equiv p_0 = \frac{1}{4}$ and $p(S_1) \equiv p_1 = \frac{3}{4}$. Find the entropies of the source 'S' and that for the extended source S^3 . 8

- 6. Write short notes on **any two** from the following: 10+10=20
 - (a) Discrete Memoryless Channel (DMC)
 - (b) Line coding in digital communication
 - (c) Differential Phase Shift Keying (DPSK)
 - (d) Binary Erasure Channel (BEC) and its transition matrix.

