Total number of printed pages-12 Stage single stage stage 2019 Mano **ELECTRONIC DEVICES CIRCUITS** Paper: EC 301 Full Marks: 100 Time: Three hours The figures in the margin indicate full marks for the questions. Answer any five questions. (a) Discuss the effect of Q-point

- location on ac operation.
 - Write down the application of CC (ii) amplifier.
 - (iii) Draw the small-signal model of the CB configuration.
 - Compare voltage gain, current (b) gain, input resistance, output resistance in between three different configurations (CC, CB, CE).

Contd.

capacitor in a single stage (ii) What are the functions of coupling complifier?

For the above circuit:

SMIRAL INSTITUTE

- small signal CE model. Draw the equivalent ac circuit with
- (ii) Calculate input resistance (r_i) , current gain (A_i) , voltage gain current gain (A_v) , overall voltage gain, overall 9

The JFET above has $g_m = 5 \times 10^{-3} s$ and $r_d = 100k\Omega$

Find (i) the input resistance

(ii) the voltage gain

(iii) the output resistance of the amplifier.

ယ

midband voltage gain $|v_L|/|v_S|$ equal to 90. Find The amplifier shown above has a CENTRAL LIFE WAR

- (i) the voltage gain $|v_L|/|v_i|$
- (ii) the lower cutoff frequency
- (iii) \mathcal{Z} the voltage gain $|v_L|/|v_s|$ in dB, at the cutoff frequency affects the high frequency response Explain how the shunt capacitance

0

(ii) capacitance? What is the source of this shunt

of an amplifier.

- (1) circuit of the above amplifier and find out voltage gain equation. 4 Draw the small signal equivalent
- (ii) Draw & discuss different types of Amplifier Models.

TECHNOLOGY

(i) type in brief. What are different methods of Interstage Coupling. Discuss each

MEAL INSTAN

(a)

- (ii) State and explain Miller's theorem. 2
- 6 (i) Draw & explain block diagram of a series voltage regulator. 5 a series voltage regulator.

S

(ii) Draw and explain the circuit of a transistor series voltage regulator.

In the above Figure V_i =20V R=200 Ω V_z =12V

CENTRAL LISTARY

 $V_{BE} = 0.65V$

Find (a) V_0

- (b) The collector emitter voltage of the pass transistor and
- (c) the current in the 200Ω resistor. 5

- 4. (a) Draw the hybrid-π or the Giacoletto-π model of a BJT. Discuss the formation of collector-base capacitance and base-emitter junction diffusion capacitance.
 1+4
- (b) The figure shown below is a hybrid- π model of a CE-stage in a BJT. Find expressions for the short circuit current gain and unity gain bandwidth (f_T) of the transistor.

The following low-frequency parameters are known for a given transistor at room temperature, and at $I_c = 10mA$ and $V_{CE} = 10V$, $h_{ie} = 500\Omega$, $h_{oe} = 4 \times 10^{-5} A/V$; $h_{fc} = 100$; $h_{re} = 10^{-4}$. At the same operating point, $f_T = 50 MHz$ and $C_{b'c} = 3pF$. Calculate the values of all the hybrid- π parameters.

10

The above amplifier has the following parameters $V_{CC} = +12V$, $h_{fe} = 200$; $r_i = 10k\Omega$, $C_{b'c} = 2pF$, $R_b = R_1 \parallel R_2 = 2kO$ mid-band gain, 3dB frequency f_H . hybrid- π model and hence find the $R_L = 200\Omega(R_C >> R_L).$ $C_{b'e} = 200 pF, r_{bb'} = 20\Omega, r_{b'e} = 150\Omega$ Draw the

The capacitance coupled single tuned model of the above circuit. amplifier. Draw the hybrid- π equivalent above figure represents a

ECHIVOLOGYNOR

0

is given by considering the source resistance R_s Show that for the above circuit shown in (b), the voltage gain (without

$$A_V = \frac{A_{res}}{1 + j2\delta Q_e}$$
; where

 $Q_e \rightarrow \text{Effective quality factor of the}$ → Fractional frequency variation, o/p circuit.

 $A_{res} \rightarrow Voltage$ gain at resonance $(\delta=0).$

53 (EC 301) ELDC/G

9

Contd.

53 (EC 301) ELDC/G ∞

- 0 (a)
- amplifier and ' B_0 ' is the bandwidth for Show that the bandwidth of a 'n' stage the single stage. cascaded identical amplifier is given . bandwidth of 'n' stages of the cascaded by $B_n = B_0 \sqrt{2^{1/n}} - 1$; where ' B_n ' is the
- 6 amplifier, show that the maximum In a complementary class B push-pull power efficiency is $\eta \approx 78.5\%$ 10
- 7 (a) Define the following:
- Offset voltage

CENTRALLIBRO

- (ii) CMRR
- (iii) Slew Rate
- 9 Derive the expression of 3-input inverting summing amplifier
- 0 integrator voltage. derive the expression for its output Draw the circuit of an integrator and State application of an

- *(d)* For an integrator circuit $V_i(t) = \sin \omega t$. $\omega t = \frac{\pi}{2}$ if $V_0(0) = 0$ and $\omega = 1MHz$. If $R_1 = 4k\Omega$ and $C = 2\mu F$, find V_0 at 6
- 00 (a) Give topology for various types of feedback amplifier.

10

(d) amplifier. State advantages of negative feedback

(c)

- OLOGY WORKING than bandwidth without feedback. that bandwidth with feedback is greater frequency of the amplifier and prove on lower cutoff and upper cutoff Explain the effect of negative feedback
- of 1000 with $f_L = 50Hz$ feedback. then calculate gain f_L and f_H with An amplifier has midband voltage gain $f_H = 50kHz$. If 5% feedback is applied and
- 9 (a) Differentiate between class A, B and C amplifier.
- *(b)* Explain the working of directly coupled diagram. class A amplifier with the help of neat

Maximum collector efficiency of class A amplifier is Describe Hartley oscillator with its operation one 0=(0) V h Find the operating frequency of a transistor Hartley oscillator, if $L_1=100\mu H$, $L_2=1mH$, mutual inductance between the coils is $20 \mu H$ & C = 20 pF. Differentiate between JFET and BJT. 10. (a) (b) Explain operation of N-channel FET. Also explain its static characteristic curves. A JFET has a drain current of 5mA. If (c) I_{DSS} = 10mA and $V_{GS(off)}$ = -6V, find the value of V_{GS} and V_{P} . Draw a neat circuit diagram of (d) transistor monostable multivibrator and discuss its working. 53 (EC 301) ELDC/G 12 200