Total number of printed pages:

Programme: D/Semester-II/DPH206

2022

SUBJECT NAME: Applied Physics-II

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

		The figures in the margin indicate full marks for the questions.	
		Answer any five questions.	
1.	a)	Distinguish between reflection and refraction of light.	2
	b)	What is refractive index? Does it depend of the wavelength of light?	2+2=4
	c)	Explain total internal reflection with the help of two examples.	6
	d)	A small candle, 2.5cm in size is placed at 27cm in front of a concave mirror of radius of curvature 36cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Describe the nature and size of the image. Or An object of size 10cm is placed at a distance of 15cm from a convex lens of 10cm focal length. Find the position of image and size of the image.	4
	e)	Show that the refractive index of the material of a prism is given by $n = \frac{\sin[(A + \delta m)/2]}{\sin(A/2)}$ where n, A and δm represent refractive index, angle of prism and minimum deviation respectively.	4
2.	a)	State Coulomb's inverse square law in electrostatics and hence obtain the expression of the electrostatic force between two-point charges in C.G.S and S.I. units?	2+4=6
	b)	What are electric lines of force? Write few properties of the electric lines of force.	1+2 = 3
	c)	Define electric field strength and electric potential. Obtain the expression of the electric potential due to a point charge +Q at a point at a distance r from it.	2+4
	d)	Define capacity of a condenser? Write its S.I. unit and dimensional formula.	3
	e)	Find the equivalent capacity of the combination of three capacitors 400µF,	4

		3.3μ F and 47μ F are connected in (a) in series (b) in parallel.	
3	a)	Distinguish between Natural and Artificial Magnet with examples.	4
	b)	Write short notes on Modern Theory of Magnetism.	6
	c)	Define Magnetic field and magnetic field intensity. Obtain the expression of the magnetic field intensity at a point at a distance r from the centre of a bar magnet in the end on position or in the broad side on position.	2+4=6
	d)	A short bar magnet has length 0.05 metre and pole strength $64\pi^2 \times 10^{-3}$ weber. Calculate the magnetic field due to this magnet at a point (a) at a distance of 0.5 metres from the centre of magnet on the axial line (b) at a distance of 0.5 metres from the centre of magnet on the equatorial line.	4
4	a)	Define emf and internal resistance of a cell? Distinguish between primary and secondary cells. Write short notes on the two defects of Simple Voltaic Cell.	2+2+6=10
	b)	What is importance of grouping of cells? What is the condition for maximum current in the circuit containing mixed grouping of the cells.	1+3=4
	c)	In how many rows and column will you arrange 640 number of identical cells (20V, 1.5 ohm) in a mixed grouping circuit connected an external resistance of 150hm.	6
5.	a)	Define resistivity and conductivity? Write their units in S. I.?	3
	b)	State Ohm's law. How would you verify Ohm's law experimentally?	2+3=5
	c)	State the Joule's law of heating effect.	2
	d)	If three resistors of 3Ω , 6Ω and 9Ω are connected in parallel in a closed electrical circuit and a battery of 18V is connected across them, find the equivalent resistance and also the total current in the circuit.	4
	e)	An electric lamp marked 50W is worked on 220 V mains. Find the resistance of the lamp and the current passing through it. How much electrical energy would be consumed in lighting this electric bulb for a duration of 24 hours.	2+2+2=6
6	a)	Discuss the nature of magnetic fields due to a straight conductor and a solenoid carrying current.	2+2=4
	b)	State and explain Faraday's law of electromagnetic induction. What is Lenz's law?	4+1=5
	c)	What is a triode valve? Explain the different components of a triode valve.	1+3=4
	d)	What is photoelectric effect? Write down Einstein's photoelectric equation and state the physical significances of the symbols used.	1+3+3=7
7.	a)	Define binding energy and mass defect. Express 1 a.m.u in MeV	1+1+4=6

b)	Write four properties of X-rays.	4
c)	Explain intrinsic and extrinsic semiconductors. Define doping.	2+2+1=5
d)	How a diode can be used as a rectifier?	5

Gentral Institute of Technology Kowaihar