Total number of printed pages: 02

D/3rd /DMA301

2024

MATHEMATICS-III

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions

1. a) Using Bernoulli's theorem solve:
$$3x2=6$$
(i) $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$ (ii) $\frac{dy}{dx} + \frac{y}{x} = x^2y^2$ b) Find the Orthogonal trajectories (any two): $4x2=8$ (i) $y = mx + c$ (ii) $xy = c$ (iii) $r^2 = a^2 \cos \theta$ c) Solve the following differential equation: $3x2=6$ (i) $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$ $3x2 = 6$ (ii) $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$ $3x2 = 6$ (ii) $(x + y - 10)dx + (x - y - 2)dy = 0$ $4x4=16$ (i) $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$ (ii) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x$ (iii) $(D^2 + 4)y = \sin 3x$ (iv) $(D^2 - 4D + 4)y = x^3e^{2x}$ b) Using the method of variation of parameters solve $\frac{d^2y}{dx^2} + y = c$ 43. a) Solve the following homogenous differential equations: $5x2 = 10$ (i) $(y^2 - xy)dx + x^2dy = 0$ (ii) $\frac{dy}{dx} + \frac{x-2y}{2x-y} = 0$ 5b) Using the method of variation of parameters solve $\frac{d^2y}{dx} + y = c$ 5(i) $(y^2 - xy)dx + x^2dy = 0$ (ii) $\frac{dy}{dx} + \frac{x-2y}{2x-y} = 0$ 5(i) $(y^2 - xy)dx + x^2dy = 0$ (ii) $\frac{dy}{dx} + \frac{x-2y}{2x-y} = 0$ 5b) A particle moves along the curve $x = 4cost, y = 4sint, z = 6t$. Find the velocity and acceleration at time $t = 0$.5(c) Find the unit tangent vector to any point on the curve $x = Acost, y = 5$ $Asint, z = Bt$.54. a) For the matrices $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 5 & 0 \end{bmatrix}$, verify that $(A,B)^T = B^T.A^T$.5

	b)	Express the matrix $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 4 \\ 4 & 2 & 2 \end{bmatrix}$ as the sum of a symmetric and skew	5
		symmetric matrix.	
	c)	Using elementary row operations find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & -3 & 1 \end{bmatrix}$.	10
5.	a)	Find the adjoint and hence the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$.	6
	b)	Solve the following system of equations using the matrix inversion method:	7
		X + Y + Z = 6; X + 2X = 7; 3X + Y + Z = 12	
	c)	Find the rank of the following matrix by reducing it to the Echelon form: $A = \begin{bmatrix} 2 & 1 & -1 & 4 \\ 1 & -1 & 2 & 12 \\ 2 & 2 & -1 & 9 \end{bmatrix}$	7
		12 2 - 1 91	
6.	a)	If $\vec{r} = sint\hat{\imath} + cost\hat{\jmath} + t\hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2\vec{r}}{dt^2}$, $\left \frac{d\vec{r}}{dt}\right $, $\left \frac{d^2\vec{r}}{dt^2}\right $.	2.5x4=10
6.		If $\vec{r} = sint\hat{\imath} + cost\hat{\jmath} + t\hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2\vec{r}}{dt^2}$, $\left \frac{d\vec{r}}{dt}\right $, $\left \frac{d^2\vec{r}}{dt^2}\right $.	2.5x4=10 3+2=5
6.			
6. 7.	b) c)	If $\vec{r} = sint\hat{i} + cost\hat{j} + t\hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2\vec{r}}{dt^2}$, $\left \frac{d\vec{r}}{dt}\right $, $\left \frac{d^2\vec{r}}{dt^2}\right $. Prove that (i) $div\vec{r} = 3$ (ii) $curl\vec{r} = 0$.	3+2=5
6. 7.	b) c) a)	If $\vec{r} = sint\hat{i} + cost\hat{j} + t\hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2\vec{r}}{dt^2}$, $\left \frac{d\vec{r}}{dt}\right $, $\left \frac{d^2\vec{r}}{dt^2}\right $. Prove that (i) $div\vec{r} = 3$ (ii) $curl\vec{r} = 0$. Prove that a vector function $\vec{a}(t)$ to have constant magnitude iff $\vec{a}(t)$. $\frac{d\vec{a}}{dt} = 0$.	3+2=5 5
6.	b) c) a)	If $\vec{r} = sint\hat{i} + cost\hat{j} + t\hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d^2\vec{r}}{dt^2}$, $\left \frac{d\vec{r}}{dt}\right $, $\left \frac{d^2\vec{r}}{dt^2}\right $. Prove that (i) $div\vec{r} = 3$ (ii) $curl\vec{r} = 0$. Prove that a vector function $\vec{a}(t)$ to have constant magnitude iff $\vec{a}(t)$. $\frac{d\vec{a}}{dt} = 0$. If $f(x, y, z) = 3x^2y - y^3z^2$ find $gradf$ at the point $(1, -2, -1)$.	3+2=5 5 5