2023

MATHEMATICS III

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Find ORDER and DEGREE of the following differential equations: 1.

2x5=10

5

(a)
$$\left(\frac{dy}{dx}\right)^3 - 3y^2 = 4\frac{dy}{dx} + 4x$$
 (b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$

(b)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

(c)
$$(1+x^2)dx - (1+y^2)dy = 0$$
 (d) $y = x\frac{dy}{dx} + \frac{K}{\frac{dy}{dx}}$ (e) $\frac{d^3y}{dx^3} - y = 0$

(e)
$$\frac{d^3y}{dx^3} - y = 0$$

Form differential equation whose solution is $y = A\cos x + B\sin x$, where A and B are arbitrary constants.

Solve (any one): (i) $e^{x-y} dx + e^{y-x} dy = 0$ (ii) $\frac{dy}{dx} = -\frac{y^4 + 4x^3y + 3x}{x^4 + 4xy^3 + y + 1}$ 5

Solve: (i) $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ (ii) $\frac{dy}{dx} = \frac{6x - 4y + 3}{3x - 2y + 1}$ (iii) $\frac{dy}{dx} + ysecx = tanx$ 5x4 = 20

(iv)
$$(y^4 + 4x^3y + 3x)dx + (x^4 + 4xy^3 + y + 1)dy = 0$$

3. Solve: (i) $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$ (ii) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = x$ 5x4 = 20

(iii)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = e^{3x}$$
 (iv) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = sinx$

a) For $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 1 & 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$ verify whether $A \times B = B \times A$. 5

Find the adjoint of the matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$. b) 5

Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 4 & 1 \end{bmatrix}$ by elementary row c) 10 operations.

- 5. a) For the matrices $A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$ verify that: $(A+B)^2 \neq A^2 + 2A.B + B^2$
 - b) Solve the following system of equations by matrix inversion:

$$x + 2y + 3z = 10$$
; $2x - y + z = 5$; $3x + 2y - 5z = 8$

c) Find the rank of the following matrix by reducing it to the Echelon form:

$$A = \begin{pmatrix} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & 1 \\ 0 & -3 & -6 & 4 & 9 \end{pmatrix}$$

5

6. a) If $\vec{w} = 3t^2i + \cos 2t j + 2t k$ then find the following:

(i)
$$\frac{d\vec{w}}{dt}$$
 (ii) $\left|\frac{d\vec{w}}{dt}\right|$ (iii) $\frac{d^2\vec{w}}{dt^2}$

- **b)** Find the gradient of: $\emptyset(x, y, z) = x^3y + y^3z + z^3y + 2xyz$.
- c) Find the divergence of:

$$\vec{F}(x, y, z) = xy^2 z^4 i + (2x^2 y + z)j + y^3 z^2 k$$

- **d)** Find the curl of: $\vec{F}(x, y, z) = xyz \, i + yz^2 \, j + x^2 y^2 z \, k$ 5
- e) If $\vec{F}(x, y, z) = xy i + yz^2j + x^2yz k$, then find $grad(div(\vec{F}))$.

