Total number of printed pages: 02

Programme (D)/3rd/DMA301

2022

MATHEMATICS III

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

The figures in the margin indicate full marks for the questions.			
Answer any five questions.			
		ALCO.	
1.	a)	Express the matrix $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and skew	3
		symmetric matrix.	
	b)	Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfy the	4
		condition $A^T A = I_3$.	
	c)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ by finding the Adjoint of A.	6
	d)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 3 & 3 \\ 1 & 4 & 3 \end{bmatrix}$ using elementary row	7
		operations.	
2.	a)	Prove that $\nabla \cdot (\nabla \times A) = 0$.	2
	b)	If $\varphi = x^2 y^2 z^2$ and $A = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ then find the value of $\frac{\partial^3}{\partial x^2 \partial z}(\varphi A)$.	4
	c)	If $A = x^2 z \hat{\imath} - 2y^2 z \hat{\jmath} + xyz^2 \hat{k}$, then find $\nabla \times (\nabla \times A)$ at the point $(1, -1, -1)$.	6
	d)	Solve the following system of equations using the matrix method:	8
		x + 2y + 5z = 10; x - y - z = -2;	
		2x + 3y - z = -11	
3.	a)	Find $\nabla \varphi$ if $\varphi = \frac{1}{r}$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.	5
	b)	If $\varphi = x^2 y z^2 - 3x y^2 z$, then find the directional derivative of φ at the point (1, 1, 1) in the direction of $2\hat{i} - \hat{j} + 2\hat{k}$.	5

c) Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$
. 10
4. a) Write Order and Degree of the following differential equations: 2x4=8
(i) $\frac{dy}{dx} = \frac{\sqrt{1-x^2}}{\sqrt{2-y^2}}$
(ii) $\left(\frac{dy}{dx}\right)^2 + 2y^2 = 4\frac{dy}{dx} + 4x$
(iii) $y = \sqrt{x}\frac{dy}{dx} + \frac{k}{\frac{dy}{dx}}$
(iv) $(1-x^2)\frac{dy}{dx} - xy = 1$
b) Form differential equations from the following equations: 4x3=12
(i) $y = Ae^{2x} + Be^{-2x}$
(ii) $y = e^x(ACosx + BSinx)$
(iii) $y = ACosx + BSinx$
where A and B are arbitrary constants
5. Solve: 5x4=20
a) $x^2(y+1)dx + y^2(x-1)dy = 0$
b) $(x^2 + y^2)dx + 2xydy = 0$
c) $x(x^2 + y^2 - a^2)dx + y(x^2 - y^2 - b^2)dy = 0$
d) $(1-x^2)\frac{dy}{dx} - xy = 1$
6. Solve: 5x4=20
a) $\frac{d^3y}{dx^3} - 1\frac{dy}{dx} - 12y = 0$
b) $\frac{d^2y}{dx^2} + 4y = x^2$
(c) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2e^{3x}$
d) $\frac{d^2y}{dx^2} + a^2y = Sinax$
