Total No. of printed pages = 8

19/3rd Sem/DMA301

ENTRA

2021

MATHEMATICS - III

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

- Question No. 1 is compulsory and answer any four from the rest questions.
- 1. (a) Fill in the blanks:

1×5=5

- (i) The inverse of $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ is _____.
- (ii) If $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ then $A^2 7A + I_2$ equals to
- (iii) If $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ then adj A is _____

[Turn over

(iv) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{bmatrix}$$
 then rank of A is

(v) If
$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$
 then A^2 is _____.

- (b) Choose the correct options: 1×5=5
 - (i) The gradient of the scalar field
 Ø(x,y,z) = xyz is

(a)
$$xyi + yzj + zxk$$

(b)
$$zx i + xy j + yz k$$

(c)
$$yzi + zxj + xyk$$

(d)
$$xi + yj + zk$$

- (ii) Gradient of a scalar field is a
 - (a) Scalar quantity
 - (b) Vector quantity
 - (c) A constant
 - (d) May be any quantity

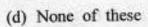
8/19/3rd Sem/DMA301

(2)

- (iii) Divergence of a vector field is a
 - (a) Scalar quantity
 - (b) Vector quantity
 - (c) A constant
 - (d) May be any quantity
- (iv) Curl of a vector field is a
 - (a) Scalar quantity
 - (b) Vector quantity
 - (c) A constant
 - (d) May be any quantity
- (v) Two vectors \vec{a} and \vec{b} are such that $\vec{a}, \vec{b} = 0$, then the two vectors are
 - (a) Parallel to each other
 - (b) Perpendicular to each other
 - (c) Equal to each other
 - (d) None of the above

- (c) Choose the correct options:
 - (i) Order and degree of the differential equation $y = x \frac{dy}{dx} + \frac{a}{\frac{dy}{dx}}$ are respectively

 $2 \times 5 = 10$


- (a) 1 and 2
- (b) 2 and 1
- (c) 1 and 3
- (d) None of these
- (ii) The differential equation of the primitive y = Ae^{2x}+Be^{-2x}, where A and B are arbitrary constants is

(4)

(a)
$$\frac{d^2y}{dx^2} - y = 0$$

(b)
$$\frac{d^2y}{dx^2} + y = 0$$

(c)
$$\frac{d^2y}{dx^2} = 0$$

(iii) The differential equation of the primitive y = Ax+A², where A is an arbitrary constant is

$$(a) \quad \frac{d^2y}{dx^2} - y = 0$$

(b)
$$\frac{dy}{dx} + y = 0$$

(c)
$$y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2$$

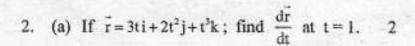
(d)
$$\frac{dy}{dx} = 0$$

(iv) Solution of the differential equation ydx + xdy = 0 is

(a)
$$xy = c$$

(b)
$$x+y=c$$

(c)
$$x^2+y^2=0$$


- (d) None of these
- 8/19/3rd Sem/DMA301
- (5)

(v) Roots of the auxiliary equation of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$ are

- (c) 5, 6
- (d) None of these.

- (b) Find the divergence of: $\vec{F}(x,y,z) = xy^2z^4i + (2x^2y+z)j + y^3z^3k.$
- (c) Find the curl of: 4 $\vec{F}(x,y,z) = 3xyz^2i + y^2\sin zj + xe^{2z}k.$
- (d) If $\vec{F}(x,y,z) = xyi + yz^2j + x^2yzk$, then find: $\nabla(\nabla \cdot \vec{F})$ 5
- (e) If Ø(x,y,z)=xyz is a scalar function, find
 Curl of Gradient of Ø.

3. (a) If
$$A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} a & b \\ 3 & 5 \end{bmatrix}$ and $AB = BA$, find a and b. Also, compute $3A + 5B$.

(b) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 show that $A^2 - 4A - 5I_3 = 0$.

7

(c) For the matrices
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 1 & - \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$,

verify that (AB)t=BtAt.

7

 (a) Solve the following system of equations by matrix method:

$$x - y + z = 4$$
$$2x + y - 3z = 0$$

$$x + y + z = 2$$

(b) Find the inverse of the following matrix by elementary transformations: 7

$$D = \begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46 \end{bmatrix}$$

Turn over

8/19/3rd Sem/DMA301

(7)

(c) Find the rank of the matrix
$$\begin{bmatrix} 1 & 4 & 5 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$$
 by

elementary transformations.

6

(i)
$$(x^2+y^2)dx + 2xydy = 0$$

(ii)
$$(y^4+4x^3y+3x)dx + (x^4+4xy^3+y+1)dy = 0$$

(iii)
$$(1-x^2)\frac{dy}{dx} - xy = 1$$
.

- (b) Find the orthogonal trajectories of the family of the parabolas y = ax².
 5
- 6. Solve the following:

5×4=20

(a)
$$\frac{d^2y}{dx^2} + 4y = x^2$$

(b)
$$\frac{d^2y}{dx^2} - a^2y = e^{ax}$$

(c)
$$\frac{d^2y}{dx^2} + a^2y = \sin ax$$

(d)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$
.

