Total number of printed pages: 02

Dip/2nd/DMA204

2023

MATHEMATICS-II

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

1.	a)	Find the median and mode from the following:									(5+5=10)
		Class	Interva	1:	0-10	ajhar 10-	20 B	20-30	30-40	40-5	
		Freque	ency:		4	1	10	6	20	10	
	b)	Calculate covariance and correlation co-efficient for the data which consists of the pairs: $(3, 6), (0, 7), (4, 6)$ and $(5, 1)$.									(5+5=10)
2.	a)	The mean marks required by 25 students of section A of a class is 47, that (4) of 35 students of section B is 51 and that of 30 students of section C is 53. Find the mean marks of the students of these three sections.									
	b)	Find the standard deviation from the following:									(6)
		X:	1	2	3	4	5				
		F:	2	1	8	2	4	0.06			
	c)	Find the equation of the straight line passing through the point (2, -3) and (3) is perpendicular to the line $4x - 5y + 9 = 0$.									
	d)	Find th	he acut	e angle	betwee	n the lir	nes x	$-\sqrt{3}y =$	= 1 and $\sqrt{3}x$	x - y = 4.	(5)
3	a)	Find the equation of the circle passing through the points $(1, 0)$, $(0, 1)$ and $(2, 1)$.									
	b)	b) Show that the triangle having vertices A(a, 0), B(-a, 0) and C(0, $a\sqrt{3}$) is equilateral.									(5)
	c)	If the points $(1, 0)$, $(0, 1)$ and (a, b) are collinear, then prove that $a+b=1$.									
	d)	 Find the gradient and inclination of the line joining the points (3, 4) and (-2, -1). 									

(2+2=4)

a) If f(x) = x + 5 and $g(x) = x^3 - 3$, then find

(i) $f(g(\mathbf{x}))$ (ii) $g(f(\mathbf{x}))$

b) Evaluate the limit(any two) (i) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ (ii) $\lim_{x \to 1} \{2x + 5(\frac{x^2}{x^2 + 1})\}$ (iii) If $f(x) = \begin{cases} x^2 - 1, when \ 0 < x < 1 \\ 2x - 1, when \ 1 \le x \le 2 \end{cases}$

Find $\lim_{x \to 1} f(x)$

c) If
$$f: R \to R$$
 defined by $f(x) = \begin{cases} 1, & \text{if } x \text{ belongs to } Z \\ -1, & \text{if } x \text{ does not belongs to } Z \end{cases}$ (4)
Central Institute Of Technology

 $(4 \times 2 = 8)$

(5+5=10)

Test the continuity of the above function at
$$x = 1$$
.

d) Examine whether the following function is bijective or not (4) $f: R \to R$

Defined by $f(x) = \frac{1}{1-x}$

- 5. a) Using definition, find the derivatives of the following functions (4+4=8)
 - (i) $f(x) = e^{2x}$ (ii) f(x) = x(ii) f(x) = x(i) $y = x^2 log x$ (ii) $y = \frac{d\sqrt{2x+3}}{dx}$

(iii)
$$x = y^x$$
 (iv) $x^2 + y^2 = 1$
c) Evaluate $\frac{d^2y}{dx^2}$ if $y^2 = 4ax$ (3)

a) Evaluate (any 2) (2× 5 = 10)
(i)
$$\int 4(7x - 2)^5 dx$$
 (ii) $\int \frac{sinx+2cosx}{2cosx} dx$

(i)
$$\int 4(7x-2)^5 dx$$

(ii) $\int \frac{sinx+2cosx}{2sinx+cosx} dx$
(iii) $\int cos^3 x dx$
(iv) $\int \frac{1}{x^2+4x-1} dx$

b) Evaluate (any two)

6.

(i)
$$\int_{2}^{4} 2\sqrt{x} \, dx$$
 (ii) $\int_{1}^{2} x \log x \, dx$ (iii) $\int_{0}^{\pi/2} \frac{1}{1+\sin x} dx$

4.