Total number of printed pages = 5 19/2nd Sem/DMA 204

2022

MATHEMATICS - II

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Find the Mean, Median and Mode from the following: 2+4+4=10

Class Interval :	0-10	10-20	20-30	30-40	40-50
Frequency :	5	6	8	30	10

- (b) The mean marks required by 25 students of section A of a class is 47, that of 35 students of section B is 51 and that of 30 students of section C is 53. Find the mean marks of the students of these three sections. 5
- (c) Find the Standard deviation from the following: 5

X :	1	2	3	4	5
F :	2	• 1	8	2	4

[Turn over

2. (a) Find the Quartile Deviation from the following : 10

Class Interval :	0-10	10-20	20-30	30-40	40-50
Frequency :	10	5	15	6	4

 (b) Calculate Covariance and Correlation coefficient for the data which consists of the pairs: (3, 6), (0, 7), (4, 6) and (5, 1). 5×2=10

- (a) Evaluate : 4×2=8
 - (i) $\lim_{x \to \infty} \frac{x}{\sqrt{4x^2 + 1 1}}$

3.

(ii) If
$$f(x) = \begin{cases} x^2 + 1, \text{ when } 0 < x < 1 \\ 2x + 1, \text{ when } 1 \le x \le 2 \end{cases}$$

Find
$$\lim_{x \to 1} f(x)$$
.

(b) Test the continuity of the following function at the point x = 1 4

1 GRADE 2014 VEL

$$f(x) = \begin{cases} 1, \text{ if } x \in Z \\ -1, \text{ if } x \notin Z \end{cases}$$

(c) Examine whether the following function is bijective or not. 5

(2)

$$f: R \rightarrow R$$
 defined by $f(x) = \frac{1}{1+x}$.

3/19/2nd Sem/DMA 204

- (d) Find the equation of the circle whose radius is 4 and which is concentric with the circle $x^2+y^2+2x-6y=0.$ 3
- 4. (a) Evaluate any five : $4 \times 5 = 20$
 - (i) $\int 4(7x-2)^5 dx$ (ii) $\int \frac{\sin x + 2\cos x}{2\sin x + \cos x} dx$

(iii)
$$\int \cos^4 x \, dx$$
 (iv) $\int \frac{1}{x^2 + 4x - 1} \, dx$

(v) $\int x^m \log x \, dx$ (vi) $\int x^2 \sin 2x \, dx$

- (vii) $\int e^x \cos 3x \, dx$.
- 5. (a) Consider the function

$$f(x) = \begin{cases} x^2, \text{ when } 0 < x < \\ x, \text{ when } 1 \le x \le 2 \end{cases}$$

Examine the differentiability of the function f at x=1.

[Turn over

(b) Find $\frac{dy}{dx}$ (any two), if : (i) $y = xe^{2x}$

3/19/2nd Sem/DMA 204 (3)

(ii)
$$y = \frac{d\sqrt{2x+3}}{dx}$$

(iii) $x^y = y^x$.
(c) Evaluate (any two): $4 \times 2 = 8$
(c) Evaluate (any two): $4 \times 2 = 8$
(i) $\int_1^2 \frac{\sqrt{3-x}}{\sqrt{x}+\sqrt{3-x}} dx$
(ii) $\int_1^2 x \log x dx$.
(a) In what ratio does the origin divide the line segment joining the points (-2, 0) and (4, 0)?
(b) Find the Cartesian coordinates of the point whose polar coordinates are 5
(i) $\left(2\sqrt{2}, \frac{\pi}{4}\right)$ (ii) $\left(1, \frac{2\pi}{3}\right)$.
(c) If the distance between the points (r, 0) and (0, 4) be 5 units, find the value of r. 5

(d) If the points (1, 0), (0, 1) and (x, y) be collinear, prove that x + y = 1. 5

3/19/2nd Sem/DMA 204 (4) 200

7. (a) Find the equation of the straight line which cuts the Y-axis at the point (0, -2) making an angle of 30° with \overline{OX} . 5

(b) Reduce the equation 2x + 3y - 5 = 0 to

- (i) Gradient form (ii) Intercept form. 5
- (c) Find the equation of the straight line passing through the point (1, 2) and parallel to the straight line joining the points (3, -4) and (-5, 6). 5
- (d) The equations of two diameters of a circle are x+y-6=0 and x+2y-4=0. If its radius be 10 units, find the equation of the circle. 5

(5)

3/19/2nd Sem/DMA 204

200