2022

		2022	
		MATHEMATICS-I	S
		Full Marks: 100	
		Time: Three hours	
		The figures in the margin indicate full marks for the questions.	
		Answer any five questions.	
1.	a)	If $sin\theta + sin^2\theta = 1$, then show that $cos^2\theta + cos^4\theta = 1$	4
	b)	If $cosec\theta = \sqrt{2}$, find the values of tan θ and $\cos \theta$	4
	c)	Prove that $tan70^{\circ} = 2tan50^{\circ} + tan20^{\circ}$	4
	d)	Evaluate $4sin^2 45^\circ + cot^2 60^\circ + cosec^2 30^\circ$	4
	e)	Eliminate θ from the following equations	4
		$x = y(cosec\theta + cot\theta)$ and $z = y(cosec\theta - cot\theta)$	
2.	a)	If A, B and C are the three positive acute angles. If $sin(B + C - A) = 1$	5
		cos(C + A - B) = 1 and $tan(A + B - C) = 1$, then find the value of A, B and C.	
	b)	Solve $\cos\theta + \sqrt{3}\sin\theta = 1, 0^{\circ} < \theta < 360^{\circ}$	5
	c)	If $sinA = \frac{2}{3}$ and $cosB = \frac{3}{5}$, find the value of sin (A - B).	5
	d)	Find the maximum and minimum value of $7\cos\theta + 24\sin\theta$	5
3.	a)	In triangle ABC, show that $(b - c)\cos\frac{A}{2} = a\sin\frac{B-C}{4}$, with usual meaning	5
		of the symbols.	
	b)	The ratio of the angles of a triangle is 1 : 2 : 3 and the circum-radius (R) is 10 cm. Find the sides of the triangles and the area of that triangle.	5
	c)	A man standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60° . When he retires 40 feet from the bank, he find that the angle to be 30° . Find the height of the tree and breadth of the river.	5

	d)	The angle of depression of two points on the ground, due East of a tower 100 feet height, observed from its top are 45° and 30° respectively. Calculate the distance between the objects.	5
4.	a)	If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$.	5
	b)	Find the conjugate of the complex number: $\frac{3+4i}{5-3i}$.	5
	c)	If $\frac{1-ib}{1+ib} = x + iy$, show that $x^2 + y^2 = 1$.	5
	d)	Find the modulus and argument of the complex number $-2\sqrt{3} - 2i$	5
5.	a)	A question paper is divided into two groups A and B each containing 5 questions. A candidate is required to answer 6 questions in all but he is not permitted to attempt more than 4 questions from each group. Find the number of ways in which the candidate can choose his questions.	5
	b)	Find the number of triangles that can be formed by joining 10 points, 6 of which are in the same straight line.	5
	c)	Find the value of <i>m</i> for which the following vectors perpendicular: $2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}; \ \hat{\imath} + 2\hat{\jmath} + m\hat{k}$	5
	d)	Find the angle between the vectors: $2\hat{i} + \hat{k}$ and $-\hat{i} + 2\hat{j} + 3\hat{k}$	5
6.	a)	Expand $\left(\sqrt{\frac{x}{a}} - \sqrt{\frac{a}{x}}\right)^6$	5
	b)	Find the term independent of x in the expansion of $\left(x^2 - \frac{1}{x^3}\right)^{20}$	5
	c)	Simplify $\log \frac{a^3b^3}{c^3} + \log \frac{b^3c^3}{d^3} + \log \frac{c^3d^3}{a^3} - 3\log b^2c$	5
	d)	Prove that: $7\log \frac{10}{9} - 2\log \frac{25}{24} + 3\log \frac{81}{80} = \log 2$	5
7.	a)	Show that: $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots = e^{-1}$	5
	b)	Show that: $\begin{vmatrix} \sec\theta & \sin\theta & \tan\theta \\ 0 & 1 & 0 \\ \tan\theta & \cot\theta & \sec\theta \end{vmatrix} = 1$	5
	c)	Solve the following equations by Cramer's rule: u + 2v + 3w = 6 2u + 4v + w = 7 3u + 2v + 9w = 14	7
	d)	$3u + 2v + 9w = 14$ Prove that: $\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) = 1$	3