-9

Total number of printed pages: 2

DIPLOMA/1st Semester (Back)/DMA103

2024

MATHEMATICS-I

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

1.	a)	Reduce $sin3A + cos A$ to a product of sine and cosine	4
	b)	If $cosec\theta = \sqrt{2}$, find the values of $cot \theta$ and $sec \theta$.	4
	c)	Find the maximum and minimum value of $3\cos\theta + 4\sin\theta$	4
	d)	If $cos B = 3/5$ and $sin A = 2/3$, then find $sin (A+B)$, where A is obtuse and B is acute angle.	4
	e)	Evaluate $4sin^2 45^\circ + tan^2 60^\circ + cosec^2 30^\circ$	4
2.	a)	Show that $sin135^{\circ}cos65^{\circ} + cos45^{\circ}cos115^{\circ} = 0$	5
	b)	The angle of elevation of the top of a tower is 30° . On walking 200 meters nearer, the elevation is found to be 60° . Find the height of the tower.	5
	c)	Solve $2tan^2 \phi + sec^2 \phi = 2$, where $0 < \phi < 360^0$	5
	d)	Define Co-factor and Minor of an element.	2+3 =5
		If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}$, then find the value of x.	
3.	a)	Find the unit vector in the direction of the sum of the vectors $2i + j + k$	5
		and $i + 2j - k$.	
	b)	Find the conjugate of the complex number: $\frac{3-4i}{5+3i}$.	5
	c)	If $\frac{1-iX}{1+iX} = A + iB$, show that $A^2 + B^2 = 1$.	5
	c) d)	If $\frac{1-iX}{1+iX} = A + iB$, show that $A^2 + B^2 = 1$. Find the modulus and argument of the complex number $2\sqrt{3} + 2i$.	5 5

5

5

5

5

5

permitted to attempt more than 4 questions from each group. Find the number of ways in which the candidate can choose his questions.

- b) Find the number of triangles that can be formed by joining 10 points, 6 of which are in the same straight line.
- c) Find the value of *m* for which the following vectors perpendicular: $2\hat{i} + 3\hat{j} - 4\hat{k}; \ \hat{i} + 2\hat{j} + m\hat{k}$

d) Find the angle between the vectors:
$$2\hat{i} + \hat{k}$$
 and $-\hat{i} + 2\hat{j} + 3\hat{k}$

5.

6

7

a) Expand
$$\left(\sqrt{\frac{x}{a}} - \sqrt{\frac{a}{x}}\right)^6$$

b) Find the term independent of x in the expansion of
$$\left(x^2 - \frac{1}{x^3}\right)^{20}$$
 5

c) Simplify
$$\log \frac{a^3 b^3}{c^3} + \log \frac{b^3 c^3}{a^3} + \log \frac{c^3 d^3}{a^3} - 3 \log b^2 c$$
 5

d) Prove that:
$$7\log \frac{10}{9} - 2\log \frac{25}{24} + 3\log \frac{81}{80} = \log 2$$
 5

a) Given
$$\theta$$
 is an obtuse angle, and ϕ is acute angle. If $\sin\theta = \frac{3}{5}$ and $5 \\ tan\phi = \frac{5}{12}$, then evaluate $\sin(\theta + \phi)$

b) If the shadow of a vertical pole of 9 feet height standing on a horizontal plane is $3\sqrt{3}$ feet, find the angle of elevation of the sun.

c) Prove that
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
 5

d) Find cos 4x in terms of cos x.
 5

 a) Show that:
$$\frac{2}{31} + \frac{4}{51} + \frac{6}{71} + \dots = e^{-1}$$
 5

b) Show that:
$$\begin{vmatrix} \sec\theta & \sin\theta & \tan\theta \\ 0 & 1 & 0 \\ \tan\theta & \cot\theta & \sec\theta \end{vmatrix} = 1$$
 5

c) Solve the following equations by Cramer's rule:

$$u + 2v + 3w = 6$$

 $2u + 4v + w = 7$

3*u* + 2*v* + 9*w* = 14
d) Prove that:
$$\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) = 1$$
 3