Total number of printed pages:

DIPLOMA/FIRST Semester/DMA103

2022

MATHEMATICS-I

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	If $sin\theta + sin^2\theta = 1$, then show that $cos^2\theta + cos^4\theta = 1$	4
	b)	If $a = \sqrt{2}$ find the values of tap θ and $\cos \theta$	
		Kokrahar: BODOLAND	4
	c)	Prove that $tan70^{\circ} = 2tan50^{\circ} + tan20^{\circ}$	4
	d)	Evaluate $4sin^2 45^\circ + cot^2 60^\circ + cosec^2 30^\circ$	4
	e)	Eliminate θ from the following equations	4
		$x = y(cosec\theta + cot\theta)$ and $z = y(cosec\theta - cot\theta)$	
2.	a)	If A, B and C are the three positive acute angles. If $sin(B + C - A) = 1$	5
		cos(C + A - B) = 1 and $tan(A + B - C) = 1$, then find the value of A, B and C.	
	b)	Solve $rand + \sqrt{2}rim 0 - 4 0^{\circ} < 0 < 200^{\circ}$	5
		Solve $\cos\theta + \sqrt{3}\sin\theta = 1, \ 0 < \theta < 360$	5
	c)	If $sinA = \frac{2}{3}$ and $cosB = \frac{3}{5}$, find the value of sin (A - B).	5
	d)	Find the maximum and minimum value of $7\cos\theta + 24\sin\theta$	5
3.	a)	In triangle ABC, show that $(b - c)\cos\frac{A}{2} = a\sin\frac{B-C}{4}$, with usual meaning of the symbols.	5
	b)	The ratio of the angles of a triangle is 1 : 2 : 3 and the circum-radius (R) is	5
		10 cm. Find the sides of the triangles and the area of that triangle.	
	c)	A man standing on the bank of a river observes that the angle subtended by	5
		a tree on the opposite bank is 60°. When he retires 40 feet from the bank, he	
		find that the angle to be 30°. Find the height of the tree and breadth of the	
		river.	а С

	d)	The angle of depression of two points on the ground, due East of a tower	5
		100 feet height, observed from its top are 45° and 30° respectively.	
		Calculate the distance between the objects.	
3			2
4.	a)	If the sum of two unit vectors is a unit vector prove that the magnitude of	5
		their difference is $\sqrt{3}$.	
	b)	Find the conjugate of the complex number: $\frac{3+4i}{5-3i}$.	5
	c)	If $\frac{1-ib}{1+ib} = x + iy$, show that $x^2 + y^2 = 1$.	5
	d)	Find the modulus and argument of the complex number $-2\sqrt{3} - 2i$.	5
5.	a)	A question paper is divided into two groups A and B each containing 5	5
		questions. A candidate is required to answer 6 questions in all but he is not	
		permitted to attempt more than 4 questions from each group. Find the	
		number of ways in which the candidate can choose his questions.	
	b)	Find the number of triangles that can be formed by joining 10 points, 6 of	5
		which are in the same straight line.	
	c)	Find the value of <i>m</i> for which the following vectors perpendicular:	5
		$2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}; \ \hat{\imath} + 2\hat{\jmath} + m\hat{k}$	
	d)	Find the angle between the vectors: $2\hat{i} + \hat{k}$ and $-\hat{i} + 2\hat{j} + 3\hat{k}$	5
6.	a)	Expand $\left(\sqrt{\frac{x}{a}} - \sqrt{\frac{a}{x}}\right)^6$	5
24	b)	Find the term independent of x in the expansion of $\left(x^2 - \frac{1}{x^3}\right)^{20}$	5
	c)	Simplify $\log \frac{a^3b^3}{c^3} + \log \frac{b^3c^3}{a^3} + \log \frac{c^3a^3}{a^3} - 3\log b^2c$	5
	d)	Prove that: $7\log \frac{10}{9} - 2\log \frac{25}{24} + 3\log \frac{81}{80} = \log 2$	5
7.	a)	Show that: $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots = e^{-1}$	5
	1		
	b)	Show that: $\begin{vmatrix} sec\theta & sin\theta & tan\theta \\ 0 & 1 & 0 \end{vmatrix} = 1$	5
		$ tan\theta \ cot\theta \ sec\theta $	
	c)	Solve the following equations by Cramer's rule:	7
		u + 2v + 3w = 6	
		2u + 4v + w = 7 3u + 2v + 9w = 14	
	d)	Prove that: $(1 + x + \frac{x^2}{x^3} + \frac{x^3}{x^3} + \dots)(1 - x + \frac{x^2}{x^3} - \frac{x^3}{x^3} + \dots) - 1$	3
		$(1 + 2 + 3) + (1 + 2 + 3) + (1 + 2 + 2) = \frac{1}{3!} + \cdots = 1$	