2022

MATHEMATICS-I

Full Marks: 60

Time: Two hours

the section of the se The figures in the margin indicate full marks for the questions.

¢°

Multiple Choice Questions A.

1 x 20=20

- 1. For what value θ , sin θ is definable
 - a. -2
 - b. 2
 - $\frac{1}{2}$ c.
 - d. 3
- Value of $\frac{tan(-\theta)}{sec(-\theta)}$ is 2.
 - sinθ a.
 - sinθ b.
 - cosθ c.
 - d. - cosθ

√3

- 3. Value of sin sin 300° is
 - b.

a.

c.

- Value of $cos\left(\frac{4\pi}{2} \theta\right)$ is
- cosθ a.

 $\frac{2}{\sqrt{2}}$

- cosθ b.
- sinθ c.
- d. *sinθ*
- Equation $cos\theta = -1$ has a principal solution 5.

- 0 a.
- π b.
- c. -π
- $\frac{3\pi}{2}$ d.

6. Which of the following is vector quantity

- Time period a.
- speed b.
- c. magnitude
- d. force
- Which of the following is not condition of collinear vectors 7. solo C
 - a. $\vec{a} = n.\vec{b}$
 - b. $\vec{a} = -\vec{b}$
 - c. $\vec{a} \times \vec{b} = 0$
 - d. $\vec{a} \neq \vec{b}$
- If $\vec{a} \cdot \vec{b} = -|\vec{a}||\mathbf{b}|$, the value of θ is 8.
 - a. π
 - b. $-\pi$
 - $\frac{\pi}{2}$ c. d. $-\frac{\pi}{2}$
- Formula of unit vector \vec{a} . 9.

- 10. Modulus of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$
 - a. √13
 - $\sqrt{14}$ b.
 - 13 c.
 - 14 d.

KOKRAJHAR

- 11. The argument of the complex number 0 + i.0 is:
 - a. $\frac{\pi}{2}$ b. $-\frac{\pi}{2}$ c. π
 - . .
 - d. 0
- 12. If the 7th term of an A.P. is 7 and the 11th term is 11, then the common difference of the A.P. is:
 - a. 2
 - b. ³/₄
 - c. 1
 - d. $\frac{1}{2}$

13. If x, x+2, x+5 are consecutive terms of a G.P., then the value of x is:

- a. 1
- b. 2
- c. -2
- d. -1
- 14. Three geometric means between 1 and 81 are:
 - a. 3,8,24
 - b. **4,16,24**
 - c. 3,9,27
 - d. 3,9,28
- 15. The number of permutations of the letters of the word MOZAMBIQUE taken all at a time is:
 - a. 10!
 - b. <u>10</u>!
 - e. ${}^{10}P_{10}$
 - d. None of these
- 16. The value of $\frac{1}{i}$ is:
 - a. i
 - b. -i
 - c. 1
 - d. -1
- 17. The number of permutations of the letters of the word ENTERTAINMENT taken all at a time is:

a.
$$\frac{13}{(13-13)!}$$

b. $\frac{13!}{3!3!3!}$

d. None of these

- 18. Three arithmetic means between 1 and 9 are:
 - a. **2,4,6**
 - b. 3,4,7
 - c. 3,5,7
 - d. 2,5,7
- 19. Tick the correct relationship:
 - a. ${}^{n+1}C_r = {}^{n}C_r + {}^{n}C_{r-1}$
 - b. $^{n-1}C_{r-1} = {}^{n-1}C_{r-1} + {}^{n}C_{r-1}$
 - c. ${}^{n}C_{r-1} = {}^{n-1}C_{r-1} + {}^{n}C_{r+1}$
 - d. $^{n+1}C_{r-1} = {}^{n+1}C_{r-1} + {}^{n}C_{r-1}$
- 20 The relationship between ${}^{n}P_{r}$ and ${}^{n}C_{r}$ is:
 - a. ${}^{n}P_{r} = {}^{n}C_{r}$

b.
$${}^{n}P_{r} = \frac{1}{n!} {}^{n}C$$

c.
$${}^{n}C_{r} = \frac{1}{r} {}^{n}P_{r}$$

d. None of these

B. Very Short Question

- 1. Find the value of *sin*(15°)
- 2. Find the principal value of $cos^{-1}(-\frac{1}{2})$
- 3. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 30° and their scalar product is $2\sqrt{3}$
- 4. Show that the vectors $2\hat{\imath} 3\hat{\jmath} + 4\hat{k}$ and $-4\hat{\imath} + 6\hat{\jmath} 8\hat{k}$ are collinear.
- 5. Find the term independent of x in the expansion of $(x + \frac{1}{x})^{12}$
- 6. Simplify: $\log \frac{81}{16} 2\log \frac{3}{2} + \log \frac{3}{4}$

C Short Question (any seven)

Show that
$$tan^{-1}(\frac{1}{2}) + tan^{-1}(\frac{1}{2}) = \frac{\pi}{4}$$

Find the value of sin20° sin40° sin80°

Prove that
$$\cos\frac{\pi}{32} = \frac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{2}}}$$

- 4. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a})$. $(\vec{x} + \vec{a}) = 15$
- 5. Find a unit vector perpendicular to each of the vectors $(\vec{a} \vec{b})$ and $(\vec{a} + \vec{b})$, where $\vec{a} = 2\hat{\imath} - 7\hat{\jmath} - 3\hat{k}$, $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$.
- 6. Find the complex conjugate of: $\frac{7+2i}{7-2i}$

4

2*6=12

4*7=28

GY KOKRAIIAR

- In an A.P., the ratio of the 2^{nd} term to the 6^{th} term is 2/5. If the 8^{th} term is 26, 7. what is the 10th term of the A.P.?
- CENTRAL MANTINE OF TECHNOLOGIA KORAMIAR Prove that: $\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) = 1$ 8.