CENTRAL INSTITUTE OF TECHNOLOGY KOKRAJHAR (Deemed to be University) KOKRAJHAR :: BTR :: ASSAM :: 783370

END – SEMESTER EXAMINATION DIPLOMA

Session: July-December, 2024

Course Code: DMA101

Semester: 1st Time: 3 Hrs. Full Marks: 100

Course Title: Mathematics I

Answer Q.1 and ANY NINE from the rest	

1.	(a)	Write the conditions for the two vectors: $a_1i + a_2j + a_3k$ and	2
		$b_1i + b_2j + b_3k$ to be parallel and perpendicular.	
	(b)	What is the argument of the complex number lying in the:	2
		(i) Real axis, (ii) Imaginary axis.	
	(c)	If a binomial expansion has even number of terms then the number of middle term(s) in the expansion is one. State TRUE or False	2
	(d)	The smallest positive integer <i>n</i> for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is	2
	(e)	For binomial coefficients: $C_0, C_1, C_2, \dots, C_n, C_0 + C_1 + C_2 + \dots + C_n = _$	2
2.	(a)	Find the vector in the direction of $2i + 3j + 3\sqrt{2}k$ which has magnitude 6.	3
	(b)	If $\vec{a} = 5i - j - 3k$ and $\vec{b} = i + 3j - 5k$ then show that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular to each other.	3
	(c)	Show that the points $(1,2,7)$, $(2,6,3)$ and $(3,10,-1)$ are collinear.	4
3.	(a)	Express $(\frac{1+i}{1-i})^3$ in the form A + <i>i</i> B.	3
	(b)	Find real values of x and y for which the following equation is satisfied: $(x + iy) \cdot (2 + i) = 3 - i$	3
	(c)	Find the modulus and argument of: $1 - i\sqrt{3}$	4
4.	(a) Find the middle term in the expansion of: (Find the modulus and argument of: $1 - i\sqrt{3}$ Find the middle term in the expansion of: $(x + \frac{1}{x})^8$	3
	(b)	Find the coefficient of x^6 in the expansion of $(x^3 + \frac{1}{x^3})^6$	3
	(c)	Find the term independent of x in the expansion of $(\frac{x}{2} - \frac{3}{x^2})^{18}$	4
5.	(a)	Find the value of the determinant: $A = \begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$	4
	(b)	Solve the following system of equations by Cramer's rule: 5x - y + 4z = 5; $2x + 3y + 5z = 2$; $5x - 2y + 6z = 1$	6
6.	(a)	Resolve into partial fractions (any one):	5
		(i) $\frac{6x^3+5x^2-7}{3x^2-2x-1}$, (ii) $\frac{2x+1}{3+2x-x^2}$, (iii) $\frac{2x+3}{6-5x+x^2}$	
	(b)	Resolve into partial fractions (any one):	5
		(i) $\frac{x^2}{(x+1)^2(x+2)}$, (ii) $\frac{1-2x+2x^2}{(1-x)^3}$	

		$x^{2}-4x+3$	
		(ii) $\lim \frac{x^3 - 2x^2 + 7x + 6}{2x^2 + 7x + 6}$	
		(i) $\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x^2 - 4x + 3}$ (ii) $\lim_{x \to \infty} \frac{x^3 - 2x^2 + 7x + 6}{2x^3 + 4x + 8}$ (iii) $\lim_{x \to 2} \frac{3x^2 - x - 10}{x - 2}$	
L		(iii) $llm_{\chi \to 2} - \frac{1}{x-2}$	
	(b)	Find the derivative from the first principle (any one):	5
		(i) x^3 , (ii) $\sin x$	
8.	(a)	If $cos\theta + cos^2\theta = 1$ show that $sin^2\theta + sin^4\theta = 1$	3
	(b)	If $\sin \theta + cosec\theta = 2$, then show that $sin^{16}\theta + cosec^{18}\theta = 2$	3
	(c)	If $tan\theta + sin\theta = m$ and $tan\theta - sin\theta = n$, then show that $m^2 - n^2 = 4\sqrt{mn}$	4
9.	(a)	Evaluate (any two): (i) tan(-1485 ⁰), (ii) cos(495 ⁰), (iii) sec(660 ⁰)	2+2
	(b)	Solve for θ lying between 0 ^o and 360 ^o (any one):	3
		(i) $\tan \theta = \frac{1}{\sqrt{3}}$, (ii) $\sin^2 \theta = \frac{3}{4}$	
	(c)	If $\tan A = \frac{5}{6}$ and $\tan B = \frac{1}{11}$ then show that $A + B = \frac{\pi}{4}$	3
10	(a)	Show that $\tan 70^\circ = 2 \tan 50^\circ + \tan 20^\circ$	3
	(b)	Prove that $\sin^2\left(\frac{\pi}{8} + \frac{A}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{A}{2}\right) = \frac{1}{\sqrt{2}}\sin A$	4
	(c)	Prove that $\frac{\sin\theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos\theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta$	3
11.	(a)	Show that $\sin 5\theta = 16 \sin^5 \theta - 20 \sin^3 \theta + 5 \sin \theta$	5
	(b)	If $A + B + C = \pi$, then show that $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$	5
12.	(a)	In $\triangle ABC$, if $\sin^2 A + \sin^2 B = \sin^2 C$, then show that the triangle is right angled.	3
\neg	(b)	In $\triangle ABC$, if acos B = bcos A show that the triangle is isosceles.	3
	(c)	In $\triangle ABC$, if acos A = bcos B show that the triangle is either isosceles or right angled.	4