Total number of printed pages:4

D/1st/DMA101

2021

MATHEMATICS-I

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

1. a) Write the true or false

1×10

- i) $\frac{\pi}{2}$ is a special angle of the trigonometric function.
- ii) $sin(\theta)$ is definable for all real value of θ .
- iii) Maximum value of $cos(\theta)$ is greater than 1.
- iv) If $-1 \le x \le 1$, then $\cos^{-1}(-x) = -\cos^{-1}(x)$
- $V) \qquad \sin^{-1}\left(\frac{2}{3}\right) + \cos^{-1}\left(\frac{2}{12}\right) = \frac{\pi}{2}$
- vi) If \vec{a} and \vec{b} are two vectors such that $\vec{a}.\vec{b} = 0$, they are perpendicular to each other.
- vii) All possible combination of the digits 1, 2 and 3 is 7.
- viii) The expansion $(x + x^2)^2$ has an Independent term.
- ix) If a, b and c are in GP, then $b^2 = ac$
- x) Conjugate of the complex number $\frac{1}{i}$ is i
- b) i) The sum of the first 3 terms in an A.P. is 51 and that of the last 3 terms is 99. If the A.P. has 11 terms, what is the value of the middle term?

4

		ii)	The 5 th term of a G.P. is -48 and the 7 th term is -12 . Find the first term of the G.P.	3
		iii)	Insert 4 geometric means between 3 and 729.	3
2.	a)	i)	Express $\frac{(2-3i)^2}{2+3i}$ to the form of $A + iB$.	3
		ii)	If $x + iy = \sqrt{\frac{a+ib}{c+id^2}}$ then prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$	4
		iii)	Express $\sqrt{3} + i$ into polar form.	3
	b)	i)	If $(m+n)_{p_2=56}$, and $(m-n)_{p_2=12}$, find the value of m and n.	3
		ii)	Prove that, $n_{C_r} + n_{C_{r-1}} = n + 1_{C_r}$	3
		iii)	Using Cramer's rule solve the equations: 5x + 7y + 2 = 0 4x + 6y + 3 = 0	4
3.	a)	i)	Find the middle term in the following expansions	4
			$\left(2x+\frac{1}{y}\right)^{\varepsilon}$	
			$\left(x-\frac{1}{x}\right)^{9}$	
	1180	ii)	Find the independent term of x in the expansion of $\left(2x + \frac{1}{3x^2}\right)^5$	3
1		iii)	Find the co-efficient of x^4 in the expansion of $\left(x - \frac{1}{x}\right)^{11}$	3
	b)	i)	Find the values of x, y and z so that the vectors $\frac{2}{2}$	3

			$\vec{a} = x\hat{\imath} + 2\hat{j} + z\hat{k}$ and $\vec{b} = 2\hat{\imath} + y\hat{j} + \hat{k}$ are equal.	
		ii)	Compute the magnitude of the following vectors: $\vec{a} = 2\hat{i} - 7\hat{j} - 3\hat{k}$, $\vec{b} = \frac{1}{\sqrt{5}}\hat{i} - \frac{1}{\sqrt{5}}\hat{j} + \frac{1}{\sqrt{5}}\hat{k}$	4
		iii)	Find the sum of the vectors, $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$.	3
4.	a)	i)	Find the unit vector in the direction of the vector: $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$	3
		ii)	Find the angle between the vectors $\hat{v} - 2\hat{j} + 3\hat{k}$ and $3\hat{v} - 2\hat{j} + \hat{k}$	3
		iii)	Find the projection of the vector $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ on the vector $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$	4
	b)	i)	Write the value of $sin(-660^{\circ})$, $tan(-\frac{31\pi}{3})$	4
		ii)	Find the value of cos(15°)	3
		iii)	Express as the sum of difference: $2sin 3\theta cos 4\theta$ and $2sin \frac{\pi}{10} sin \frac{3\pi}{4}$	3
5.	a)	i)	Find the principal value of $\cos^{-1}(-\frac{1}{2})$	5
			$\sin\left\{\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)\right\}$	SAHAN S
		ii)	Prove that $\cos \frac{\pi}{32} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \sqrt{2}}}$	5
	b)	i)	Show that $tan^{-1}\left(\frac{1}{2}\right) + sin^{-1}\left(\frac{1}{\sqrt{10}}\right) = \frac{\pi}{4}$	5
		ii)	Find the modulus and argument of the complex number $\frac{1}{1+i}$	5
			3	

6.	a)	i)	Find the coordinates of the point $R(x,y)$ which divides the line segment joining the points P(- 4,7) and Q(5,-9) in the ratio 3:2 internally.	5
		ii)	A Point moves in a plane such that the sum of its distances from the point A(c,0) and B(-c,0) is a constant 2a. Prove that the equation to its locus is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $b^2 = a^2 - c^2$	5
	b)	i)	Find the equation of the straight line passing through the point of intersection of the straight lines $x - 2y + 5 = 0$ and $2x - 5y + 6 = 0$, which also	5
		ii)	passes through the point (-16,0) Find the equation of the straight line passing through the point (2,3) and parallel to the straight line joining the points P(3,-4) and Q(- 5,6)	5