Total number of printed pages:4

D/3rd/DMA301

2021

MATHEMATICS-III

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer Q. No. 1(compulsory) and any four from Q.No.2-7.

1. a) State True or False:

1x10=10

i) Vectors which are parallel to the same plane are coplanar vectors.

ii) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then $r^2 = x^2 + y^2 + z^2$.

iii) Two vectors \vec{a} and \vec{b} are orthogonal if $\vec{a} \cdot \vec{b} = 0$.

iv) A vector whose modulus is unity is called unit vector.

v) $x^2 + y^2 = 1$ is an ordinary differential equation.

vi) Order of the differential equation $\frac{dy}{dx} = x + sinx$ is 1.

vii) Degree of the differential equation $\frac{dy}{dx} = \frac{1+x^2}{1+y^2}$ is 2.

viii) Number of arbitrary constants in the solution of the differential equation $\frac{d^2y}{dx^2} = y$ is 2.

ix) The differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ is homogeneous.

x) Differential equation of the form $\frac{dy}{dx} + Py = Qy^n$, where P and Q are functions of x or constants is called Bernoulli's differential equation.

1

2.

3

.

(iv)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = x$$

(c) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 2e^{3x}$
4. a) If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + 4e^{-1} + e^{-1} + B^2$, find a and b.
b) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ show that $A^3 - 23A - 40I_3 = 0$.
c) For the matrices $A = \begin{bmatrix} 1 & -4 \\ 0 & 5 \\ 6 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & -7 \end{bmatrix}$ verify that $(AB)^t = B^t A^t$.
5. a) Solve the following system of equations by matrix method
 $3x - 2y + 3z = 8$
 $2x + y - z = 1$
 $4x - 3y + 2z = 4$
b) Find the inverse of the following matrix by elementary transformations.
 $D = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$
c) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ by elementary transformations.
6. a) Show that the vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} - 3\vec{j} - 5\vec{k}$ and $3\vec{i} - 5$
 $4\vec{j} - 4\vec{k}$ form a right angled triangle.
b) Find the unit vector in the direction of $2\vec{a} - \vec{b}$ where $\vec{a} = 5$
 $2\vec{i} - 3\vec{j} + 4\vec{k}$ and $\vec{b} = \vec{i} - 2\vec{k}$.

- c) If $\vec{a} = 2\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{b} = 5\vec{i} + \vec{j} + 2\vec{k}$ then find $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.
- d) If $f(x, y, z) = 3x^2y y^3z^2$ find grad. f at the point 5 (1, -2, -1).
- 7. a) The position vectors of the points P and Q are $2\vec{i} + 3\vec{j} 2+2=4$ \vec{k} and $4\vec{i} - 3\vec{j} + 2\vec{k}$ respectively. Determine \overrightarrow{PQ} and $|\overrightarrow{PQ}|$.
 - b) Find the angle between the vectors $2\vec{i} + 3\vec{j} \vec{k}$ and $\vec{i} 2\vec{j} 6\vec{k}$.

5

6

5

- c) Find the area of a triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as its vertices.
- d) If $\vec{F} = x^2 y \vec{i} + x z \vec{j} + 2y z \vec{k}$ then find $curl \vec{F}$.

