Total number of printed pages:

Programme(D)/ 5th Semester/DIE503

2022

ELECTRICAL AND ELECTRONIC MEASUREMENTS

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

The figures in the margin indicate full marks for the questions.						
Answer any five questions.						
1.	a)	Explain the working principle of a permanent magnet moving coil instrument.	6			
	b)	What are the operating forces that act on a measuring instrument? Briefly explain each of them.	6			
	c)	What is electromagnetic damping? The coil of a moving coil galvanometer has 300 turns and is suspended in a uniform magnetic field of 0.1 Wb/m ² . The control constant is 0.2×10^6 N-m/rad. The coil is 20 mm wide and 25 mm high, with a moment of inertia of 0.15 x 10^{-6} kg-m ² . If the galvanometer resistance is 200 Ω , calculate the value of the resistance which, when connected in the galvanometer terminals, will give critical damping. Assume the damping as purely electromagnetic.	2+6=8			
2.	a)	With the help of diagram show how does a galvanometer work as an ammeter? Derive the expression of multiplying power of ammeter.	2+3=5			
	b)	What are the essential requirements of a multiplier resistor in voltmeter circuit? It is desired to measure the voltage across a 50 Ω resistor in the circuit below. Two voltmeters are available for this purpose: Voltmeter A with a sensitivity of 1000 Ω /V and Voltmeter B with a sensitivity of 20,000 Ω /V. Calculate (a) the reading of each voltmeter and (b) the error in each reading expressed as a percentage of true value, if both the voltmeter has a range of 0-50 V.	2+6 = 8			

	c)	Explain the working principle of electrostatic type instrument. Derive the	3+4=7
		equation of force in electrostatic instrument.	
3	a)	Electrodynamometer type instrument is widely used for the measurement	1+1+5+2=
		of which parameter? Whether it works for DC as well as AC inputs? How	9
		torque is developed in electrodynamometer type instrument? Write the	
		advantages and disadvantages of such instruments.	
	b)	With the help of circuit diagram write the constructional details of single	6+5=11
		phase induction type energy meter. Briefly describe the operating principle	
		of single phase induction type energy meter.	
4	a)	What are the ranges of resistance values for low and medium resistors?	2+4+5=11
		How ammeter-voltmeter method can be used for measurement of unknown	
		resistance?	
		With the help of circuit diagram show how a Kelvin's bridge can be used	
		for low resistance measurement.	
	b)	What are the issues faced in the measurement of high resistance	3+4+2 = 9
		measurement? How loss-charge method can be used for high resistance	
		measurement? How many coils are used in Megger? To which coil,	
		deflecting pointer is connected?	
5	a)	Derive the expression of unknown inductance of Maxwell's inductance	5+2=7
		bridge. Also draw the phasor diagram of the currents and voltages.	
	b)	Which bridges can be used for measurement of capacitance? Derive the	1+5+2=8
		expression of unknown capacitance in any one of the bridge and draw the	
		necessary phasor diagram.	
	c)	A Maxwell's capacitance bridge as shown below is used to measure an	5
		unknown inductance in comparison with capacitance. The various values at	
		balance, $R_2 = 400 \Omega$; $R_3 = 600 \Omega$; $R_4 = 1000 \Omega$; $C_4 = 0.5 \mu$ F. Calculate the	
		values of R_1 and L_1 . Calculate also the value of storage (Q) factor of coll if frequency is 1000 Hz	
		frequency is 1000 frz.	
		$\left \begin{array}{c} \leftarrow E_1 \longrightarrow \leftarrow E_3 \longrightarrow \\ l_1 \swarrow b \end{array} \right $	
		Ri Ka Zi II	
		R ₂ Ic	
		$\longleftarrow E_2 \longrightarrow \longleftarrow E_4 \longrightarrow$	

6	a)	What do you mean by storage and dissipation factors? What is the total	2+2+5=9
		inductance between two coils connected in series opposite? Draw the	
		circuit diagram of a Heaviside mutual inductance bridge and derive the	
		expression of mutual inductance?	
	b)	What are the sources of errors in bridge circuits? How stray conductance	2+2+7=11
		effect in bridge circuits can be eliminated? Show how Wien's bridge can be	
		used for the measurement of frequency of a power supply?	
7		What are the advantages of digital maters even the analog maters? Describe	2+7-0
/	a)	the working of a ramp type digital voltmeter	2+7-9
		the working of a ramp type digital volumeter.	
	b)	What is basic difference between CRO and DSO? With the help of block	1+10 =11
		diagram, explain the function of the components of a CRO.	
		07	
		$\mathbf{\chi}_{\mathbf{Q}}$	
		O `	
		$\mathbf{v}_{\mathbf{x}}$	
	C		