Total No. of printed pages = 5

2021

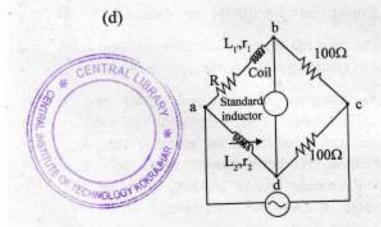
ELECTRICAL AND ELECTRONIC MEASUREMENTS

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

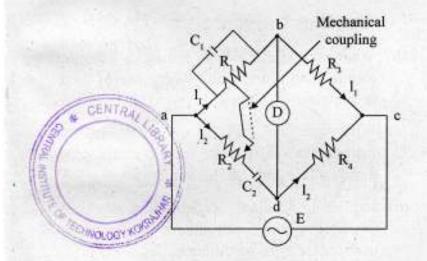

- 1. (a) From the point of view of measurement, how would you classify the resistances? 2
 - (b) Describe the ammeter voltmeter method used for measurement of medium resistances. 7
 - (c) A voltmeter of resistance 500Ω and a milliammeter of 1Ω resistance are used to measure a resistance by ammeter voltmeter method. If the voltmeter reads 20V and milliammeter reads 100mA, calculate the value of measured resistance:
 - (i) if the voltmeter is put across the resistance and milliammeter is connected in series with the unknown resistance;

Turn over

CENTRAL LIBR

19/5th Sem/DIE503

- (ii) if the voltmeter is put across the unknown resistance with ammeter connected on the supply side.
- (d) Draw the circuit of Wheatstone bridge and derive the conditions of balance. 5
- (a) Explain the principle of working a Kelvin's Double bridge and explain how the effect of contact resistance and resistance of leads is eliminated.
 - (b) Mention the detectors commonly used for a.c. bridges.
 - (c) Describe the working of a Hay's bridge for measurement of inductance. 5


In the Maxwell's bridge above the arm "ab" Contains a coil with inductance "L1" and resistance "r1" in series with a non-inductive

81/19/5th Sem/DIE503 (2)

resistance "R". Arm "bc" and "dc" are each a non-inductive resistance of 100Ω . Arm "ad" contains a standard variable inductor "L2" of resistance 32.7Ω (r2). Balance is obtained when L2 = 47.8mH and R = 1.36Ω . Find the value of resistance and inductance of the coil in the arm "ab". 5

 (a) Describe the working of Heaviside Mutual Inductance Bridge for determination of mutual inductance of a coil.

In the Wein's bridge above, calculate the value of the frequency for the given parameters: $R1=100\Omega$, $R2=150\Omega$, C1=0.1F and C2=0.05F.

81/19/5th Sem/DIE503 (3) [Turn over

	(c)	State the different effects based on which the electrical measuring instruments are working.		
	(d)	Name the essential torques that can be found in an indicating instrument. 4		
4.	(a)	The torque of an ammeter varies directly with the amount of current flowing through it. I a current of 10 A produces a deflection of 80 degree, what deflection will occur for current of 4 A when the instrument is		
		(i) spring controlled		
		(ii) gravity controlled ? 4		
	(b)	What are the methods to introduce damping torque in an instrument? Which one of these is popular and why? 5		
	(c)	What are the sources of errors in MI Instruments? Also, state the advantages and disadvantages of MI Instruments. 5		
	(d)	Explain in details the construction, working, advantages and disadvantages of Electrody- namometer type instruments. 6		
5.	(a)	Describe the constructional details and principles of operation of a d'Arsonval galvanometer. 7		
81/	19/5	th Sem/DIE503 (4) $\frac{2}{3}$ 50		

 (c) List the advantages of electronic voltmeters. 3 (d) With a suitable diagram, explain the main parts of a CRT. 8 Write short notes on any four : 5×4=20 (a) Induction type energy meter (b) Schering Bridge (c) De Sauty's bridge (d) Loss of charge method (e) Megger. 	b) Why does MI instrument have non-lin scales ?	near 2
parts of a CRT. 8 Write short notes on any <i>four</i> : 5×4=20 (a) Induction type energy meter (b) Schering Bridge (c) De Sauty's bridge (d) Loss of charge method	c) List the advantages of electronic voltmet	00223
 (a) Induction type energy meter (b) Schering Bridge (c) De Sauty's bridge (d) Loss of charge method 		100.34
(b) Schering Bridge(c) De Sauty's bridge(d) Loss of charge method	Write short notes on any four: 5×4=	=20
(c) De Sauty's bridge(d) Loss of charge method	a) Induction type energy meter	
(d) Loss of charge method	b) Schering Bridge	
	c) De Sauty's bridge	
(e) Megger.	d) Loss of charge method	
	e) Megger.	5

81/19/5th Sem/DIE503

4

50

(5)