2023

CONTROL SYSTEMS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

١.		the most appropriate answer:	and	1 x 10=1
	i)	Transfer function can be defined as		
		[A] Ratio of change in output to change in inpu	ut	
		[B] Ratio of Laplace transform of input to the I	Laplace transform of output	
		[C] Ratio of Laplace transform of output to the	Laplace transform of input	
		[D] Ratio of Laplace transform of output to inp	out	
	ii)	An air conditioner is an example of		
		[A] Closed loop system	Open loop system	
		[C] Both open and closed loop system [D]	Manually controlled	
		system ESTD.: 2006	5	
	iii) A second order system will be underdamped for		or	
		[A] ६> 1.2 तमसो मा ज्योति[B]	ξ= 0	
		[C] ξ =0.2	ξ=1	
	iv)	What will be the order of the system if G(s)=(2	$2s+2)/(s^3+2s^2+1)$	
		[A] Zero [B] G	One	
		[C] Two [D] T	Three	
	v)	Laplace transform is used to study a system in		
		[A] time-domain [B] s	-domain	
		[C] z-domain [D] r	none of the above •	
	vi)	The overall transfer function of a system with forward gain of G(s) and negative unity feedback is given by		
		[A] $1/[1+G(s)]$ [B] G	G(s)/[1+G(s)H(s)]	

		[C] $G(s)/[1+G(s)]$ [D] $G(s)/[1-G(s)]$		
	vii)	The following system with $G(s)=1/s(s+3)$ is		
		[A] Stable [B] Unstable		
	-	[C] Marginally stable [D] None of the above		
	viii)	Polar plot gives the		
		[A] Variation of G(s) against ω [B] Variation of G(s) against s		
		[C] Variation of G(s)H(s) against ω [D] Variation of G(s)H(s) against s		
	ix)	The Magnitude plot and phase plot in Bode plot are represented as:		
		[A] $20\log G(jw) $ versus $\log \omega$ and phase shift versus $\log \omega$.		
		[B] 10log G(jw) versus log ω and phase shift versus ω		
		[C] $20\log G(jw) $ versus ω and phase shift versus $\log \omega$		
		[D] G(jw) versus ω and phase shift versus ω.		
	x)	A system has 2 poles and 1 zeros in its open-loop transfer function. The slope of its highest frequency asymptote in its magnitude plot is		
		[A] +40 dB/dec [B] -40 dB/dec		
		[C] +20 dB/dec [D] -20 dB/dec		
1	xi)	With the help of block diagram, describe the operation of any one practical closed loop system.		
1	xii)	For a series RLC circuit, show the input, output and find the order of the system.		
2.	a)	.01011 11 00 119		
		i) 5e ^{-3t} ii) sin 5t		
2.	b)	Find the inverse Laplace transform of the following:	3+3=6	
		i) $X(s) = \frac{1}{s+5} + \frac{2}{(s+3)^2+4}$		
		ii) $X(s) = \frac{3}{(s-3)(s+2)(s+1)}$		
-		11) $\Lambda(S) = \frac{1}{(s-3)(s+2)(s+1)}$		
2.	c)	Write the expression of torque developed a rotational system and find the transfer function of the system. What are the analogies between second order electrical and second order mechanical system?	6+2=8	
_		8 × × 8		

. . .

3	a)	Reduce the block diagram and obtain C(s)/R(s)	10
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3.	b)	Find the overall transfer function of the following signal flow graph $R(s) G_1 \qquad G_2 \qquad G_3 \qquad G_4 \qquad G_5$ $R(s) G_4 \qquad G_5 \qquad G_4 \qquad G_5$ $R(s) G_4 \qquad G_5 \qquad G_6 \qquad G_6$	10
4	a)	Determine the unit impulse response of a first order system and draw the waveforms of the input and the output.	
4	b)	What is the most desired damping condition in a second order system? Derive the expression of the output for a critically damped system with unit step input.	
4	c)	Define rise time, peak time and settling time of an underdamped second order system with the help of diagram.	
4.	d)	How the type (0,1, etc.) of a system can be mathematically determined?	
5	a)	Obtain the expression of transfer function of a first order single tank level system.	
5	b)	What do you mean by steady state and transient errors? Derive the expression of steady state error of a control system.	2+4=6

5	c)	Determine the settling time of a second order system if its damping factor	3
		is 0.4 and the natural frequency is 5.5 rad/sec.	
5	d)	Determine the steady state error of a type-0 and 1 system when unit step input is applied to it.	
6	a)	Define stability of a system. If one of the poles of a transfer function is on the left half and the other pole is on the right half of the s-plane, whether the system will be stable? If yes/no-why?	2+2+6=10
		Using Routh Hurwitz method, examine the stability of a system with the following characteristic equation:	
		$s^4+8 s^3+18 s^2+16s+5=0$	
6	b)	What are the magnitude and angle conditions for a root locus? For what value of K, the point $(-2 + 5j)$ will be present on the root locus. Consider that the system has closed loop gain, $G(s)H(s) = K/s(s + 4)$ and unity feedback. Also check whether the angle condition is satisfied by point or not?	
7	a)	Determine the magnitude and phase angle of the following transfer function and draw the polar plots $G(s) = \frac{K}{1 + sT}$	8
	b)	What is the use of Bode plot? Mathematically define gain margin and phase margin. What do you mean by asymptotic Bode plot?	1+3+2=6
9	c)	Determine the phase crossover frequency and gain margin of the following transfer function $G(s) = \frac{K}{s(1+2s)(1+s)}$	6