Total number of printed pages = 4

19/4th Sem/DIE 401

TRAE

2022

ELECTRONICS DEVICES AND CIRCUITS – II

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Explain voltage and current amplifiers with the help of Thevenin's and Norton equivalent circuits. 2×3=6
 - (b) What is a feedback system? Explain the concept of a feedback system with a suitable diagram. 1+8=9
 - (c) Give the comparison between positive and negative feedback. 3
 - (d) Define 'Sensitivity and Desensitivity'.
- 2. (a) Derive the expression for voltage gain with positive feedback. 5

[Turn over

2

(b)	Explain	the	advantages	of	a	negativ	/e
	feedback	amplifier.		-			3

- (c) Name the different feedback topologies. 4
- (d) The overall gain of a multistage amplifier is 100. When negative feedback is applied, the gain reduces to 10. Find the fraction of the output that is feedback to the input.
- (e) In a negative feedback amplifier, A = 100, $\beta = 0.04$ and $V_s = 50$ mV. Find
 - (i) Gain with amplifier
 - (ii) Output voltage
 - (iii) Feedback factor
 - (iv) feedback voltage.
- (f) Negative feedback reduces (Fill in the blank)
- (a) State Barkhausen criteria. Explain the effect of the magnitude of the product of the open-loop gain of the amplifier and the feedback factor on the nature of oscillations.
 - (b) Explain the operation of the LC tank circuit.
 - (c) Draw the circuit diagram of Hartley oscillator and explain its action.

29/19/4th Sem/DIE 401 (2)

- (d) A Hartley oscillator is designed with $L_1 = 2 \text{ mH}$, $L_2 = 20 \mu \text{H}$ and a variable capacitance. Determine the range of capacitance values, if the frequency of oscillation is varied between 950 kHz and 2050 kHz.
- 4. (a) Explain the principles of working of the Wein bridge oscillator circuit. Also, find an expression for the frequency of oscillations.
 6+6=12
 - (b) What is the Piezoelectric effect? Draw the equivalent electric circuit of a quartz crystal.
 - (c) Explain the basic principles of operation of the RC oscillator.
- 5. (a) With the op-amp symbol explain the importance of inverting and non-inverting terminals. Also mention some applications of op-amp.
 - (b) Define common-mode signal and CMRR.
 - (c) Determine the output voltage of an op-amp for the input voltages of 300 μ V and 240 μ V. The differential gain of the amplifier is 5000 and the value of the CMRR is 10⁵.

(3)

29/19/4th Sem/DIE 401

[Turn over

SCHNOL

2

- (d) Why op-amp can be used in open-loop configuration for linear applications? 3
- (e) Explain the various ideal op-amp characteristics. 4
- (a) Draw non-inverting amplifier using op-amp and derive an expression for its output voltage.
- (b) Draw the subtractor circuit using op-amp and derive the expression for the output voltage.
- (c) A 5 mV, 1 kHz sinusoidal signal is applied to the input of an op-amp integrator for which $R1 = 100 \text{ k}\Omega$ and $C = 1 \mu\text{F}$. Find the output voltage. 6
- 7. Write short notes on any *four* of the following: $5 \times 4 = 20$

(4)

- (i) Differential amplifier
- (ii) Voltage follower
- (iii) Tuned amplifier

6.

- (iv) Crystal oscillator
- (v) Multi-vibrator.

29/19/4th Sem/DIE 401

50