(DIGITAL ELECTRONICS-DIE304) End Term Examination-2024 Full Marks- 100: Time- 3 Hours

		Answer question no. 1 and any four (4) questions from the rest.	
1.	a)	Fill up the blanks-	$10 \ge 1 = 10$
		i) The hexadecimal number that comes after (FAFF) ₁₆ is	
		ii) Octal Number that comes before (6700) ₈ is	
		iii) 2's complement of decimal number $(7)_{10}$ in binary is	
		iv) The output of a 6-input Ex-OR gate for the input 111001 will be	
		v) The dual of the Boolean Expression- $(\bar{A}.B + A.C).\bar{B}$ is	
		vi) Canonical form of the Boolean Expression- $A + BC$ is	
		vii) Octal number equivalent of (FA07) ₁₆ is	
		viii) 2 Megabytes is equal to bits.	
		ix) A multiplexer having 100 input lines should have a minimum of select lines.	
		x) If the input of a J-K flip-flop is $(0,0)$, its output will be after the next clock pulse. (Qn = 1)	
	b)	Multiple choice questions-	5 x 1 = 5
		i) Which of the following logic gates has the output expression equivalent to- $Y = \overline{AB} + A\overline{B} + AB$	
		[A] AND [B] OR [C] NAND [D] NOR	
		ii) If one of the inputs of an Ex-OR gate is permanently tied to logic '1', then-	
		[A] Output will be LOW [B] Output will be HIGH	
		[C] Act like a buffer [D] Act like a NOT gate	
		iii) Addition of a 2's complement of a binary number X to binary number Y yields-	
		[A] $X + Y$ [B] $X - Y$ [C] $Y - X$ [D] None	
		iv) Minimum number of half-adders required to add two 4-bit data is-	
		[A] 4 [B] 5 [C] 6 [D] 7	
		v) Which of the following is an invalid BCD code?	
		[A] 0011 [B] 1001 [D] 1100 [D] 0111 HC THU	
	c)	Answer the following questions-	5 x 1 = 5
		i) 'NAND gate is called a Universal gate'. Justify the given statement.	
		ii) State the De-Morgan's theorems.	
		iii) Name any one difference between combinational and sequential digital circuits.	
		iv) What is a magnitude comparator?	
		vi) Differentiate between level-triggered and edge-triggered flip-flops.	
2.	a)	For the logic circuit diagram given below, write its output expression and the truth table.	5
	b)	Implement an OR gate using NAND gates only.	2
	c)	Prove that- i) $X.(X + Y) = X$ ii) $(\overline{X} + Y).Y = X.Y$ iii) $(A + B).(A + \overline{B}) = A$	3 x 2 = 6
	d)	Minimize the following Boolean Expressions-	$2 \ge 2 = 4$

Minimize the following Boolean Expressions-

i) $Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

ii) $Y = (A + B + \overline{C})(A + B + C)(\overline{A} + B + C)$

Draw the logic circuit diagram and truth table for the Boolean expression- $Y = A + B\overline{C}$ 1 + 2 = 3e) 3. Minimize using K-Map technique, write the minimized expression and draw the logic circuit diagram-4 + 6 = 10a) i) $F(A, B, C) = \sum m(0, 1, 2, 6, 7) + \sum d(3)$ ii) $F(A, B, C, D) = \sum m(4,5,6,7,13,14,15) + \sum d(0,1,11)$ Explain the working of a Full-adder circuit with the help of its truth table and logic diagram. 4 b) Explain the working of a 4-bit binary adder with its functional block diagram. 6 c) What is a multiplexer? Implement an 8:1 multiplexer using two 4:1 multiplexers. 2 + 4 = 64 a) b) 4 Center Institute of Technology Kokrajha:: Bodoland For the 4:1 Mux shown above, find the output expression for Y. Explain the working of a 3-to-8-line Decoder. 6 c) Implement a full-subtractor with a 3-to-8-line decoder and a few additional gates. d) 4 Explain the working of an Active-Low S-R Latch. 5. a) 4 Construct a clocked J-K flip-flop using NAND gates and state its characteristic table. b) 6 c) If both the inputs of a negative-edge-triggered J-K flip-flop is permanently HIGH, draw the output waveform 4 + 2 = 6for the flip-flop for at least 4 clock pulses. Also, find out the frequency and time-period of the output waveform if the frequency of the clock input is 2 KHz. What do you mean by race-around condition in J-K flip-flop? State how this condition can be avoided. 2 + 2 = 4d) For the flip-flop configuration provided below, answer the questions that follow. 2+6+2 =6. a) 12

i) What will be the outputs at Q₀ and Q₁ if CLEAR input is permanently grounded?

ii) If CLEAR = 'HIGH', draw the output waveforms of Q_0 and Q_1 for at least 6 clock pulses. (Assume both Q_0 and $Q_1 = 0$ initially).

iii) If the input Clock pulse has a frequency of 4 Hz, what will be the frequencies of Q_0 and Q_1 respectively?

- Implement the Boolean function with Y (A,B,C) = $\sum m(0,2,6,7)$ a suitable multiplexer. b)
- Implement a T-flip-flop using a J-K flip-flop. c)