Total number of printed pages: 2 Programme(D)/3rd/DIE303 #### 2023 # FUNDAMENTALS OF INSTRUMENTATION Full Marks: 100 Time: Three hours # The figures in the margin indicate full marks for the questions. Answer any five questions. #### Central Institute Of Technology | functional elements of the instrumentation system. b) How the instruments can be classified? Explain. 10 2. a) Define the terms- Static error, Accuracy, precision, sensitivity and drift. b) Explain the loading effect in an instrument. 10 3 Derive the input-output relation for the following and also draw its dynamic response: i. Second order instrument. ii. Zero order instrument. iii. Zero order instrument. 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. | 1 | T \ | Central institute of Technology | | |---|----|----------|---|---------| | b) How the instruments can be classified? Explain. 2. a) Define the terms- Static error, Accuracy, precision, sensitivity and drift. b) Explain the loading effect in an instrument. 10 3 Derive the input-output relation for the following and also draw its dynamic response: i. Second order instrument. ii. Zero order instrument. 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 5. a) Determine the limiting errors in following combinations of quantities with 5x2=10 | 1. | (a) | Draw the block diagram of an instrumentation system and explain the functional elements of the instrumentation system | 10 | | 2. a) Define the terms- Static error, Accuracy, precision, sensitivity and drift. b) Explain the loading effect in an instrument. 10 Derive the input-output relation for the following and also draw its dynamic response: i. Second order instrument. ii. Zero order instrument 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | | 1.) | | | | b) Explain the loading effect in an instrument. Derive the input-output relation for the following and also draw its dynamic response: i. Second order instrument. ii. Zero order instrument. 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | | (0) | | 10 | | Derive the input-output relation for the following and also draw its dynamic response: i. Second order instrument. ii. Zero order instrument. 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | 2. | <u> </u> | | 10 | | dynamic response: i. Second order instrument. ii. Zero order instrument. 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | | b) | | 10 | | ii. Zero order instrument 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? c) Define Linearity, dead zone and dead time. 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | 3 | | Derive the input-output relation for the following and also draw its dynamic response: | 12+8=20 | | 4. a) A set of independent current measurements were taken by six observers and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | | | i. Second order instrument. | | | and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean ii. the deviations from the mean, iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 5. a) Determine the limiting errors in following combinations of quantities with limiting errors | | | ii. Zero order instrument | | | iii. the average deviation, iv. the standard deviation, and v. variance. b) What are signal to noise ratio and Noise figure? c) Define Linearity, dead zone and dead time. 6 Determine the limiting errors in following combinations of quantities with limiting errors 5x2=10 | 4. | a) | and were recorded as 12.8 A, 12.2 A, 12.5 A, 13.1 A, 12.9 A, and 12.4 A. Calculate- i. the arithmetic mean | 10 | | v. variance. b) What are signal to noise ratio and Noise figure? 4 c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with 5x2=10 | | | | | | b) What are signal to noise ratio and Noise figure? c) Define Linearity, dead zone and dead time. 6 5. a) Determine the limiting errors in following combinations of quantities with 5x2=10 | | | iv. the standard deviation, and | | | c) Define Linearity, dead zone and dead time. 5. a) Determine the limiting errors in following combinations of quantities with limiting errors 5x2=10 | | | v. variance. | | | 5. a) Determine the limiting errors in following combinations of quantities with 5x2=10 | | b) | What are signal to noise ratio and Noise figure ? | 4 | | limiting errors $5x2=10$ | | c) | Define Linearity, dead zone and dead time. | 6 | | i. Sum of two quantities | 5. | a) | Determine the limiting errors in following combinations of quantities with limiting errors | 5x2=10 | | | | | i. Sum of two quantities | | | | | ii. Product of two quantities | | |----|----|---|---------| | | b) | What are the different types of errors? Explain each type. | 10 | | 6. | a) | Define recorder. Explain X-Y recorder. | 10 | | | b) | With the help of diagram, explain any one method for measuring the following: - | 5x2=10 | | | | i. Level | | | | | ii. Pressure | | | 7. | Wr | ite short notes on the followings. | 10x2=20 | | | a) | LED | | | | b) | Humidity measurement | | Kokrajhar :: Bodoland