Total number of printed pages: 2

-18

D/3rd Semester/DIE302

2023

ELECTRONICS DEVICES AND CIRCUITS-I Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a) What is diode? Explain how depletion region is formed in open circuited p-r	1
	junction. Central Institute Of Technology Kokrajhar : : Bodoland	7
	b) Explain the behaviour of p-n junction under reverse biasing.	7
	c) Draw and explain the V-I characteristics of a p-n junction diode and explain	the
	nature of this curve.	6
2.	a) Draw the circuit diagram of full wave rectifier and explain the operation.	7
	b) Derive the following: 5+	-3=8
	(i) Average DC current of full wave rectifier.	
	(ii) Average DC load voltage. STD. : 2006	
	c) In full wave rectifier primary of transformer is connected to AC mains. The	
	secondary voltage is 12-0-12 V. Calculate output voltage, PIV, ripple frequency	y and
	load current if $R_L=2 \ k\Omega$.	5
3.	a) Explain the following: 5+5	=10
	(i) Biased positive series clipper	
	(ii) Positive parallel clipper	
	b) What are the types of BJT? State two junctions in the transistor.	4
	c) Explain the working principles of NPN transistor.	6

[Turn Over]

4	a) Show that $\beta = \alpha/(1-\alpha)$.	5
	b) Draw the load line on the output characteristics of a common emitter an	nplifier.
	What is the significance? Show how the transistor acts as an amplifier?	2+2+6=10
	c) What do you understand by transistor biasing? Name different methods	used for
	transistor biasing.	2+3=5
5.	a) Explain the working of n-channel JFET.	10
	b) Explain with a neat sketch construction of n-channel MOSFET in enhan	ncement
	mode.	5
	c) Explain the operation of depletion type MOSFET.	5
6.	a) Explain the following:	2x4=8
	(i) Class A amplifier (ii) Class B amplifier (iii) Class C amplifier (iv) V	/oltage
	amplifier.	
	b) Show that maximum collector efficiency of class A transformer coupled	l power
	amplifier is 50%.	6
	c) For a power amplifier working in class-A operation, the zero signal colle	ector
	current is 80 mA. If D.C. supply voltage is 10 V. Determine (a) maximum	A.C. power
	output (b) power rating of transistor (c) maximum collector efficiency.	4
	d) Fill in the blanks:	2
	(i) Push-Pull amplifier requires transistors.	
	(ii) Overall efficiency of class B power amplifier is	
7.	(a) Explain the block diagram of basic three terminal IC regulator.	6
	(b) Show that output voltage of an adjustable voltage regulator is	
	$V_0 = 1.25[1 + R_2/R_1].$	8
	(c) Write a short note on Push-Pull amplifier.	6

1 * • *
