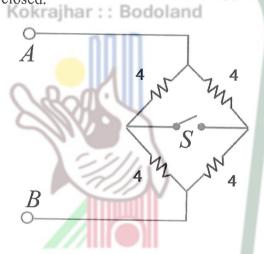
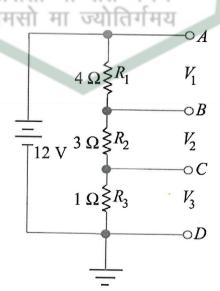
Programme (D)/3rd Semester/Paper Code: DIE301

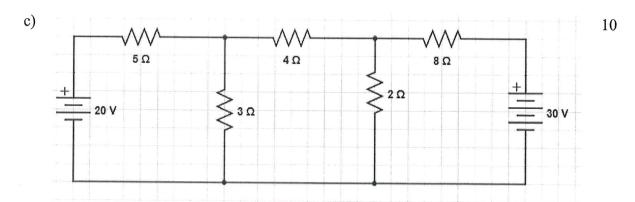
2023

ELECTRICAL CIRCUITS AND NETWORKS


Full Marks: 100

Time: Three hours

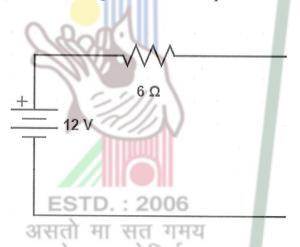

The figures in the margin indicate full marks for the questions.


Answer any five questions.

1. a) In the circuit below, find the resistance between terminals A and B when switch is: (a) open and (b) closed.

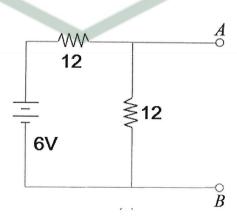
b) Find the values of different voltages (V1, V2 and V3) with the help of voltage divider rule.

Find the current flowing through the 4Ω resistance using Maxwell's Loop Current Method.

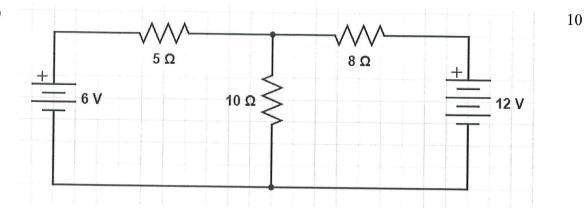

d) State the Ohm's Law.

2

10

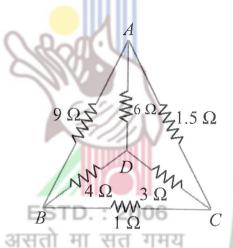

5

- 2. a) Using Node voltage method, find the current in the 4Ω resistance for the network shown in Question No. 1(c).
 - b) Convert the voltage source of Fig below into an equivalent current source.

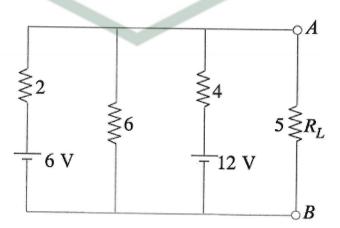


c) Determine the Norton equivalent circuits between terminals A and B for the circuit below.

5



3. a)



By using Superposition Theorem, find the current in resistance 10 Ω shown in Figure above.

- b) Apply Thevenin's theorem to calculate the current through the 10 Ω resistor of the circuit given in Question No. 3(a)
- 4. a) Using star to delta conversion, compute the network resistance measured between 10 terminals A and B.

b) Use Millman's theorem, to find the current flowing through the 5 Ω load resistance R_{L} .

5. a) State and prove the Maximum Power Transfer Theorem as applicable to do networks.

10

10

b) An alternating current of frequency 50 Hz has a maximum value of 100 A. Write 4 down the equation for its instantaneous value. c) A 50-µF capacitor is connected across a 230-V, 50-Hz supply. Calculate (a) the 6 reactance offered by the capacitor (b) the maximum current and (c) the r.m.s. value of the current drawn by the capacitor. 6. Write short notes on: 5x4 Form Factor Resonance c) Power Factor d) Power Triangle 7. a) In a series circuit containing pure resistance and a pure inductance, the current 10 and the voltage are expressed as: $i(t) = 6 \sin (314 t + 2 \pi/3)$ and $v(t) = 18 \sin (314 t + 5 \pi/6)$ (a) What is the impedance of the circuit? (b) What is the value of the resistance? (c) What is the inductance in henry? (d) What is the power factor? b) A resistance of 20 Ω , an inductance of 0.2 H and a capacitance of 100 μF are 10 connected in series across 220-V, 50-Hz mains. Determine the followings (a)

impedance (b) current (c) voltage across R, L and C (d) power in watts and VA

असतो मा सत गमय तमसो मा ज्योतिर्गमय

(e) p.f. and angle of lag.