Total number of printed pages:5

D/3rd/DIE301

2022

ELECTRICAL CIRCUITS AND NETWORKS

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

	b)	Determine current through 10Ω resistor in figure 8 using Superposition Theorem.	10
		R1 R2	
		4Ω 6Ω	
		$ \begin{array}{c c} \downarrow V1 \\ \hline \\ $	
		Figure 8	
5.	a)	The instantaneous value of a sinusoidal waveform is given as $v(t)=100Sin100\pi t$.	6
		Determine	
		 (i) RMS value of the waveform (ii) Average value of the waveform 	
		(iii) Frequency of the waveform	
	b)	Determine the average value and RMS value of the following waveform (figure 9):	10
		v(t)	
		0 3 6 9 12 15	
		AT 2	
	C	Figure 9	
	c)	A voltage waveform is represented in polar form as 15< 30°. Represent it	4
		(i) Trigonometric form	
		(ii) Rectangular form	
6	a)	A RL circuit with source voltage 12V(RMS) at 50Hz is given below (figure 10):	10

		R1 100Ω + 12V > 50Hz 0°	
		Figure 10 Determine:	
		 (i) Impedance of the circuit. (ii) RMS value of current. (iii) Phase angle. (iv) Power factor. (v) Active and reactive power of the circuit. 	
	b)	Discuss the behaviour of a circuit, when an AC voltage is connected to the following: (i) Resistance. (ii) Inductance. (iii) Series RL circuit. (iv) Parallel circuits.	10
7	a)	Discuss any two of the following with suitable examples (i) Source conversion (ii) Norton's Theorem (iii)Current divide rule	5x2=10
	b)	A RC circuit with source voltage 12 V (maximum) at 50Hz is given below (Figure 11): R1 100 12V 50Hz 10μ F Figure 11	10
		Draw the phasor diagram of the circuit. Also determine the active and reactive power of the circuit.	

Gentral Institute of Technology Kowaihar