2023

ELECTRICAL MACHINES

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.		Briefly write about the following-	5×4=20
		(i) Faraday's laws of electromagnetic induction	
		(ii) Lenz's law	
	-	(iii) Fleming's left hand and right hand rule	1
		(iv) Maxwell's right hand thumb rule	
		(v) Self and mutual induction	
2.	a)	What are the main parts of a DC generator?	5,
	b)	How DC generators are classified?	5
	c)	Draw the symbolic diagrams for different types of DC generators.	10
3.	a)	Derive the emf equation of DC generator	5
	b)	Write about the losses of DC generator.	5
	c)	A 6-pole, lap wound DC generator has 600 conductors in its armature. The	2.5+2.5=5
		flux/pole is 0.02Wb. Calculate (i) the speed at which the generator must be run to generate 300V, (ii) What would be the speed if the generator is wave connected?	
	d)	Write the SI units of the following-	1×5=5
		Electric current, Voltage, Electric power, Energy, Torque	
4.	a)	On which principle a DC generator and a DC motor works?	2.5+2.5=5
7	b)	What do you mean by back emf of DC motor?	5
			v
	c)	Derive the following speed relation for DC motor –	5
		$N=E_b/\emptyset$	2
		Where, N= speed in RPM, E _b = back emf in Volt, Ø=flux per pole in Wb	
	d)	Draw the symbolic diagrams of the following-	5
		Shunt motor, series motor, long shunt and short shunt compound motors,	

		separately excited motor.	
5.	a)	Show the power stages of a DC motor	5
	b)	A 230V motor has an armature circuit resistance of 0.6Ω . If the full load armature current is 30A and no-load armature current is 4A, find the change in back emf from no-load to full load.	5
	c)	A 20kW, 250V, DC shunt generator has armature and field resistances of 0.1Ω and 125Ω respectively. Calculate the total armature power developed when running (i) as a generator delivering 20kW output to the load (ii) as a motor taking 20kW input from supply.	5+5=10
6.	a)	Draw a neat diagram of single phase transformer showing the following-	5
		The core, primary and secondary windings, primary side source, applied voltage, induced voltage and current, secondary side induced voltage, terminal voltage, current and load	
	b)	What do you mean by step up and step down transformers? What is voltage transformation ratio?	5
	c)	What is an ideal transformer? How does it differ from practical transformer?	5
	d)	Derive the emf equation of a transformer.	5
7.	a)	A 2000/200V, 20kVA transformer has 66 turns in the secondary. Calculate, (i) primary turns, (ii) primary and secondary full-load currents.	6
The second of	b)	Write about the losses of transformer. Why open and short circuit tests are performed in a transformer?	4+2=6
	c)	A transformer takes a current of 0.6A and absorbs 64W when primary is connected to its normal supply of 200V, 50Hz; the secondary being on open circuit. Find the magnetising and iron loss currents.	8