Total number of printed pages: 2

D/V Semester/DECE513B

2024

Control Systems and PLC

Full Marks : 100

Time : Three hours

,

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	Using the Routh Hurwitz criterion comment on the stability of	5+5+5+5
	the following system for which the open loop transfer function	=20
	is	
	2	
	A) $G(s)H(s) = \frac{2}{s^2+2}$	
	B) $G(s)H(s) = \frac{2}{s^2(s-2)}$	
	C) $G(s)H(s) = \frac{2}{s(s+2)}$	
	D) $G(s)H(s) = \frac{2(s+1)}{s(s+2)+10}$, ,
		0
2.	Consider a control system with the open-loop transfer function	20
	$G(s)H(s) = \frac{K(s+2)}{s(s+1)(s+4)}$. You are required to analyze the stability	
	of this control system using the following methods:	
	Routh-Hurwitz Criterion: Determine the range of the gain K	
	for which the system is stable using the Routh-Hurwitz criterion.	
3.	For the following open loop transfer function draw the Nyquist	20
	plot by generating at least five points in $G(s)H(s)$ -plane also	
	comment on the stability of the control system.	
	$G(s)H(s) = \frac{1}{1}$	
	$s^{2}(s)^{(1)} = s^{2}(s+1)$	
