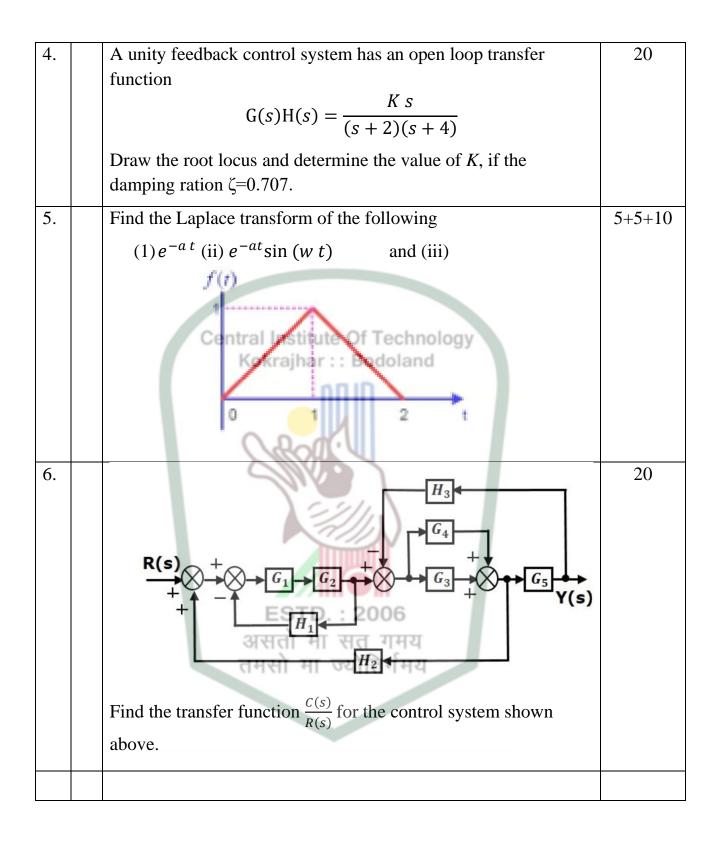
Total number of printed pages:2

Programme(D)/V-Semester/DECE-513B

2024


Control Systems and PLC

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions. e margin margine and five questions.

r	Central Institute Of Technology	
1.	Using the Routh Hurwitz criterion comment on the stability of	5+5+5+5
	the following system for which the open loop transfer function	=20
	is	
	A) $G(s)H(s) = \frac{2}{s^2+2}$	
	B) $G(s)H(s) = \frac{2}{s^2(s-2)}$	
	C) $G(s)H(s) = \frac{2}{s(s+2)}$	
	D) $G(s)H(s) = \frac{2(s+1)}{s(s+2)+10}$ 2006	
	असतो मा सत गमय	
2.	Consider a control system with the open-loop transfer function	20
	$G(s)H(s) = \frac{K(s+2)}{s(s+1)(s+4)}$. You are required to analyze the stability	
	of this control system using the following method:	
	Routh-Hurwitz Criterion : Determine the range of the gain K	
	for which the system is stable using the Routh-Hurwitz criterion.	
3.	Write a short note on Bode plot.	20

