2023

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Q1	a)	Fill in the blanks:	10
	i.	are quite common for the measurement of physical quantities like length, mass and time.	
	ii.	means the accuracy of the instrument is only at the particular point on its scale.	
	iii.	Errors may be due to wrong construction, calibration of the measuring instruments.	
	iv.	work by varying the position of a sliding contact across a uniform resistance.	
	v.	Zero galvanometer deflection or a null means that the voltage, E, is equal to the voltage drop E1, across portion ac of the slide wire.	
	vi.	A PMMC meter places a coil of wire (i.e. a conductor) in between twoin order to create stationaryfield.	
	vii.	According to Fleming's left hand rule the of this force will be proportional to the amount of through the wire.	
	viii.	For a moving coil instrument the torque should be proportional to current.	
	ix.	In order to obtain the high emission of electrons in CRO the layer ofis indirectly heated at moderate temperature.	
	х.	transducers are those which do not require any power source for their operation.	
	b)	Explain the working principle of Wheatstone bridge with its proper diagram.	10
Q2	a)	Explain why Kelvin bridge is used instead of Wheatstone bridge?	4
	b)	Why bridges work on the concept of null point technique? Explain.	4
	c)	Define Q factor of the bridges. Also explain the working principle of the Hay's bridge in details.	2+10=12

02		Differential 1 and DC 11 C	-
Q3	a)	Differentiate between DC and AC potentiometer.	5
	b)	Explain the basic working principle of the potentiometer.	5
	c)	Explain in details about DC Crompton potentiometer using its proper diagram.	10
Q4	a)	Differentiate between PMMC meter and Moving Iron type Instrument.	5
	b)	Derive the torque equation for the PMMC instruments by mentioning the various condition of torque.	7
	c)	Explain the working construction of the electrodynamometer type wattmeter.	8
Q5	a)	Differentiate between Analog voltmeter and Digital voltmeter.	5
	b)	Explain the working of digital multimeter. Also give its advantages and disadvantages.	10+5=15
Q6	a)	Explain the working of the Cathode ray oscilloscope by using its proper diagram.	10
	b)	Define Transducer. Also differentiate between Active and Passive transducer.	2+4=6
	c)	Explain different factors that influence the choice of the transducer.	4

