End Term Exam./3rd Semester (Diploma)/DECE 302/ Nov. 2024

Electronic Devices & Systems

Full Marks: 100

Time: 3 hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1 a) Discuss with neat sketch the forward and reverse bias characteristics of a PN junction diode. [7]
 - b) Mention the differences between avalanche and zener breakdown [2+6] mechanisms. What is the concept of Zener breakdown and the use of Zener diodes in voltage regulation. Describe with a neat sketch how a Zener diode regulator works?
 - c) Determine I_1, I_2 and I_{D_1} in the following circuit. (Fig 1 a) [5]

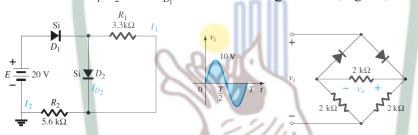
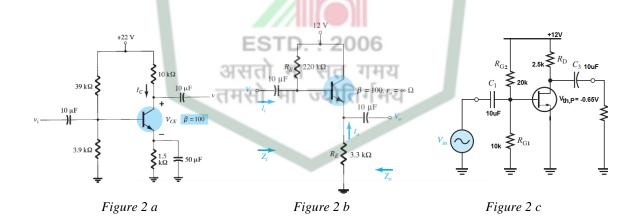
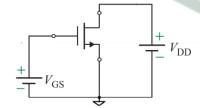



Figure 1 a Figure 2 b


2

- a) For the emitter follower network in Fig 2 b, find the values of A_v, Z_i, r_e , [8] and Z_o .
 - b) Derive the expression for small signal voltage gain $\left(A_{v} = \frac{v_{o}}{v_{i}}\right)$, input impedance Z_{i} , output impedance Z_{o} for the potential divider based

common emitter amplifier.

- 3. a Draw the diagram of center tap full wave rectifier and find the values of [4+3+3+3] V_{dc} , V_{ac} , and V_{rms} . What do you mean by peak inverse voltage
 - b Determine the output waveform for the network shown in Fig 1 b and calculate the output dc level v_0 and the required PIV of each diode. An 10 volt sine is applied as the input v_i .
 - c) Mention the non-operational quality attributes of and Embedded system [5+5] and explain the product life cycle curve for an embedded System.
- i) Derive the expression of base current (I_b) , collector current (I_c) and draw [10] the DC load lines for Fixed base bias and voltage divider bias.
 - ii) Determine I_c collector to emitter voltage (V_{CE}) from the circuit shown in [8] Figure 2 a.
 - iii) What is the difference between DC load line and AC load line. [2]
- 5. a Find the Quiescent values of VGS, IDS, VDS for the amplifier shown in Fig 2 c. Find the value of open circuit voltage gain, if $k_n = 0.3mA/V^2$
 - b Explain the operation of the n channel Depletion mode MOSFET. Draw [5+3+2] the IDS~VGS and IDS ~ VDS characteristics. Mention the informations obtained from these characteristics.
- 6 a What do you mean by oscillation? What is Barkhausen's criteria for [2+2+2+4] oscillation? Classify the sinewave oscillators and explain the operation of 2 sine wave oscillator circuit diagrams.
 - b Find the values of small signal transconductance, rds for the following circuit, if $k_n = 0.3m\text{A/V}^2$, Vth,n =1.0V, VGS=2V, VDD=2.5V.

c Find the mode of operation of the MOFET and the on resistance, if $k_n = 0.3m\text{A/V}^2$, Vth,n =1.0V, VGS=2V, VDD=0.5V.
