Programme(D)/3rd Semester/DECE 302

2023

Electronics Devices & Circuits

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Central Institute Of Technology

1.	(0)	Why Diories in 16 m	
1.	a)	Why Biasing is used for a Transistor. What are different types of biasing configuration available for a transistor?	[3+2+2]
	(b)	Draw a neat diagram of collector feedback bias and potential divider bias	[5+5+3]
		for an NPN transistor. Derive expression of the Base current and the	[0,0,0]
		collector current in each case. Draw the DC load line in each case.	
2.	2)	To the first of the cube.	
2.	(a)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array}$	[1+9]
	b)	Draw a neat sketch of Field effect transistor along with its biasing arrangement. Draw its input and output characteristic curves and explain its operation.	10
3	a)	The input impedance of FET is higher than BJT, explain why? Why BJT is current controlled device and a FET is voltage controlled.	[2+2]
	b)	Draw the symbols of a depletion type MOSFET and an enhancement type	[2]
		MOSFET. How do they differ? Draw the input and output characteristic of	[2+2+
		MOSFET device and explain its operation.	2+10]
4.	a)	Write the full form of UJT. What are the names of the terminals of a UJT?	[1+2+2]

		How it is different from a BJT.	
	b)	Draw the characteristic curve of the UJT. Explain different regions in the characteristic curve and their importance. State a few applications of UJT.	15
5.	a)	Draw the cross section of a DIAC and explain its operation with its characteristic curve	10
	b)	Draw the neat diagram of the circuit diagram of a proximity detector using DIAC and explain how it works.	10
6.	a)	Draw the block diagram for the AC-DC conversion? Explain why Full wave rectifiers are used for rectification? Explain the full wave rectifier for the full input AC Cycle.	[2+2+6]
	b)	$V_{in}(t)$ 0 T $-20V$ $V_{in}(t)$ $R \ge 2 k\Omega V_{o}$ $-20V$	[5+5]
		 I. For the rectifier configuration shown in Fig. 2, find the average value, rms value of the output. II. Draw the output waveform of the rectifier. Find the ripple factor and PIV of the rectifier. 	
7.	a.	What do you mean by breakdown in <i>pn</i> junction? Explain the zener and avalanche mechanisms of breakdown	[2+6]
	b.	What do you mean by the depletion layer and explain how it is formed in a pn junction.	[2+5]
	c.	Draw the diode circuit for the logical OR operation and explain it's operation for the '1', '0' input	5