## CENTRAL INSTITUTE OF TECHNOLOGY KOKRAJHAR

(Deemed to be University) KOKRAJHAR :: BTR :: ASSAM :: 783370

## END – SEMESTER EXAMINATION Diploma

Session: Janu-June 2025 Semester: VI Time: 3Hrs. Full Marks: 100 Course Code: DCSE613 Title: Formal Language & Automata Theory

## Answer Question 1 and any four of the remaining questions

- 1. (a) Regular language is correspond to ...
  - (i) DFA (ii) NFA (iii) Regular expression (iv) All the above
- (b) Most powerful machine is ... (i) DFA (ii) NFA (iii) PDA (iv) TM
- (c) Which one is more powerful? (i) DPDA (ii) NPDA
- (d) Write a grammar for  $L = \{aw : w \in \{a, b\}^*\}$
- (e) Write a regular expression for  $L = \{wa : w \in \{a, b\}^*\}$
- (f) Design an NFA for  $L = \{awa : w \in \{a, b\}^*\}$
- (g) Design an DFA for  $L = \{bw : w \in \{a, b\}^*\}$
- (h) Null string is
  - (i) Empty string (ii) String without any symbol (iii) String of zero length
  - (iv) All the above
- (i) The Pumping Lemma is used to prove that a language is not regular.
  - (i) True (ii) False
- (j)  $L = \{a^m b^n\}$  is regular when

(i) 
$$m, n > 0$$
 (ii)  $m = n$  (iii)  $m \neq n$ 

 $2 \times 10$ 

- 2. (a) Define the DFA. Design a DFA for the language
- $L = \{w \in \{0, 1\}^*: \text{ where binary representation of } w \text{ is divisible by } 3\}.$
- (b) Transform the  $\epsilon$ -NFA to its equivalent  $\epsilon$ -free NFA. Also find the regular expression corresponding to that NFA



4 + 6 + 6 + 4

3. (a) Convert the following NFA to its equivalent DFA.



- (b) Design an NFA for the regular expression:  $r = (a + a(ab + ba)^*)^*$
- (c) State the Chomsky hierarchy of the language.
- (d) State the pumping lemma for the regular language.

$$5 + 5 + 5 + 5$$

4. Define the PDA. Design a PDA for the language  $L = \{a^nb^n : n \ge 0\}$ . Write a context-free grammar for this language.

$$5 + 10 + 5$$

5. Define the TM. Design a TM for the language  $L=\{a^{2n}b^n:n>0\}$ . Define the recursive language.

$$5 + 12 + 3$$

- 6. Answer any four:
- (a) Ambiguous grammar.
- (b) Parse tree
- (c) Pigeonhole principle
- (d) Chomsky's Normal Form (CNF)
- (e) Church-Turing thesis
- (f) Multi Tape TM



