Total number of printed pages:02

Programme(D)/6th/DCSE613

2024

Formal Language and Automata Theory

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

 $S \rightarrow aSb \mid A, A \rightarrow bSa \mid S \mid \epsilon$.

Process the string aababb using the PDA.

2. a) Prove that the following grammar is ambiguous: 10

$$S -> S + S | S * S, S -> a | b$$

b) Reduce the following grammar to GNF:

 $S \rightarrow SS, S \rightarrow 0S1 | 01$

10

a)	Construct a DFA equivalent to the grammar	10

 $S \rightarrow aS \mid bS \mid aA, A \rightarrow bB, B \rightarrow aC, C \rightarrow \epsilon.$

b) Using pumping lemma show that following language is not regular 10

$$L = \{a^{n}b^{2n} \mid n > 0\}$$

4. a)

3.

Find the regular expression corresponding to the finite automata.

- b) Construct a finite automata for
 - i) Binary strings in which every 0 is followed by 11.
 - ii) Strings over the alphabet $\{a, b\}$ of the form $(ab)^n$, for example, ababab.
- 5. Explain with an example
 - a) Conversion of an NFA to DFA
 - b) Minimization of a DFA

6. Write short notes on:

- a) Closure properties of regular language
- b) Types of Grammars in Chomsky Hierarchy

----XXX----

20

10

10

20