Total number of printed pages: 02

2023

Formal Language and Automata Theory

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Consider the grammar S-> $0S0 1S1 SS \varepsilon$. Given the string 0101101110 , find a leftmost derivation and a rightmost derivation with corresponding parse trees.	6
	b)	Show that S -> SaS b is ambiguous. Construct an unambiguous equivalent of the grammar.	6
	c)	Convert the following grammar to Greibach Normal Form:	8
		S -> SS 0S1 01.	
2.		Define a Push Down Automata. What is Acceptance by Empty Stack and Acceptance by Final State? Design a PDA for $L = \{a^nb^n \mid n \ge 1\}$.	4+6+10
3.	a)	Given the grammar S -> AB, A -> a, B -> C b, C -> D, D -> E, E -> a, find an equivalent grammar which is reduced and has no unit productions.	10
	b)	Briefly explain the Closure Properties of Regular Languages.	10
4.	a)	Construct a NFA accepting {ab, ba}. Covert the NFA to DFA.	15
	b)	Say $L = \{Any binary number ending with 0\}$. Find the Regular Expression and Regular Grammar for this language.	5
5.	a)	Consider the grammar G given by	5
		S -> 0SA2 012, 2A -> A2, 1A -> 11. Test whether	
		i) $00112 \in L(G)$?	
		ii) $001122 \in L(G)$?	
	b)	Explain with an example Minimization of a Finite Automata	10

- c) Define a Grammar. Give example of a Regular Grammar.
- Write short notes on (Any Two)
- a) Chomsky Hierarchy
- b) Turing Machine

6.

c) Pumping Lemma

5

10+10=20