Total No. of printed pages = 3

2022

FORMAL LANGUAGE AND AUTOMATA THEORY

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Construct a DFA for the language over {0, 1}* such that it contains "000" as a substring.
 - (b) State the differences between NFA and DFA.
 - (c) Give the regular expression for the set of all binary strings ending in 00. 5
 - (d) Explain with an example conversion of NFA into DFA. 5

[Turn over

5

NTRAL

TECHNO

19/6th Sem/DCSE 613

ENTRA	LUBR		
2.	(a)	State the pumping lemma for regular languages. Prove that 0^n1^n , $n \ge 1$ is m	
-	1	Jogulai.	12
TECHN	(b)	Prove that complement of a regular language	ge
		is also regular.	8
3.	(a)	Define regular and context free gramma	ar
		Give examples.	5
			Ĩ
	(b)	Construct a Finite Automaton for the regul	ar
		expression (a+b)*abb.	5
	(c)	Find the language generated by the grammar	r :
1		S->AB	
		A->A1 0	
•		B->2B 3.	5
	(d)	Construct a Finite Automaton recognizin	10
		$L(G)$, where G is the grammar $S \rightarrow aS \mid bA \mid$	h
		and $A \rightarrow aA \mid bS \mid a$.	5
4.	(a)	Construct a CFG for set of strings the contain equal number of a's and b's over	at er
		$\sum = \{a,b\}.$	5
	(b)	Construct the Context free grammar representing the set of palindromes over $(0+1)$?	≥ *.
			5
111	19/6+	n Sem/DCSF 613 (2)	5

VTRAL IN

44/19/6th Sem/DCSE 613 (3)

50