2025

DATA MINING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	Ans	wer the following questions:									
	a)	Match the "Pre-Processing approach" with the "To handle the challenges":									
		Pre-Processing approach To handle the challenges									
		Data Cleaning, Noisy, Missing values, Different attributes,	1								
		Data Transformation, Same value expressed differently, Huge									
		Data Reduction amount of data, Range of attributes									
	b)	True or False:									
		(i) Missing data can be handled by data reduction.									
		(ii) Discrepancies in codes or names due to inconsistency.									
		(iii) Binning is used for data smoothing.									
		(iv) K-medoids cannot handle the outlier.									
		(v) Nominal variable cannot take more than two states.									
		(vi) Ordinal variables can be continuous.									
		(vii) AGNES is a bottom up approach.									
		(viii) Divisive approach iteratively merged together the clusters.									
		(ix) PAM is efficient for small datasets.									
		(x) OPTICS is a grid based clustering.									
		(xi) There will be fixed shape of cluster in density based clustering.									
		(xii) Predicting the Covid-19 behavior is not a data mining task.									
		(xiii) Replacing the data by smaller representation in data reduction.									
		(xiv) Removing the irrelevant attributes in data normalization.									
_											
2.	<u>a)</u>	Why data cleaning approach is required in the data-preprocessing?									
	b)	Apply the Min-max normalization by setting min=0 and max=1 on the									
		following group of data values 50, 150, 250, 350, 450 and 500.									
	<u>c)</u>	What are the weakness and strength of K-means clustering?									
	d)	Find out the two clusters using the k-means algorithm for the given data									
		objects {4, 6, 10, 12, 14, 16, 20, 24, 30, 32, 36, 38}. (Hint: k=2)									
3.	a)	What is a decision tree?									
	b)	What is process to do classification based on the decision tree?									
	b)	What is backpropagation neural network algorithm?									

	c)	Apply th	e Raveciar	classific	ation for pre	dicting the buy	s_comp of the given				
		test samp		1 010331110	anon for pre	arening the only	s_comp or the given				
				A NI EAT	D)						
		x = ((>40, MEDIUM, N, FAIR)									
		Age	Income	Student	Credit_rating	Class:Buys_comp					
		<=30 <=30	HIGH	N	FAIR EXCELLENT	N N					
		3140	HIGH	N	FAIR	Y					
		>40	MEDIUM	N	FAIR	Y					
		>40	LOW	Y	FAIR	Υ		12			
		>40	LOW	Υ	EXCELLENT	N		12			
		3140	LOW	Y	EXCELLENT	Y					
		<=30	MEDIUM	N	FAIR	N					
		<=30	LOW	Y	FAIR	Y					
		>40	MEDIUM	Y	FAIR	Y					
		<=30 3140	MEDIUM	Y N	EXCELLENT	Y					
		3140	HIGH	Y	FAIR	Y					
		>40	MEDIUM	N	EXCELLENT	N					
		1240	PIEDZOFI	- 1.0	EXCELLENT	N.					
		Control Institute Of Technology									
4.	a)	What do you understand by association rules?									
	b)	Explain the support and confidence with the formula.									
	c)	How to differentiate the itemset and frequent itemset?									
	d)	A database has five transactions. Let minimum support is 50%. Find all									
		frequent item sets using Apriori algorithm.									
		TID Item sets									
		1	T100	{1, 3, 4}	O(1)						
		1				4					
		T200 {1, 3, 4, 6, }									
		T300 {3, 4, 5}									
		T400 {1, 2, 3, 4, 6}									
		1700 [1, 2, 3, 7, 0]									
						/ N /					
5.	Writ	ite short notes on the following (any four):									
3.	** 110	to short notes on the ronowing (any jour).									
	a)	Dissimilarity matrix									
	,										
	b)	Multilayer Neural Network									
	c)	Dendogram									
	d)	data warehouse modeling based on star schema									
	e)	OLAP operations									
6.	Diff	ferentiate between the following (any four): 4									
•	a)							1110 = 0			
	ĺ	Model based Clustering and Grid based Clustering Data normalization and data transformation									
	b)				ransiormatic	on					
	c)	BIRCH and DIANA									
L	d)	OLTP and OLAP									
	e)	Nominal variables and Categorical variables									
	-,										