Total number of printed pages: 25

Programme(D)/6th/DCSE612

2023

DATA MINING

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Central Institute Of Technology

1.	Ans	wer the following questions:	
	a)	Match the following "Clustering approach" and "Clustering Methods":	1x6=6
		CLUSTERING APPROACH CLUSTERING METHODS	
		Hierarchical approach DBSCAN	
		Hierarchical approach k-means	
		Density approach Diana	
		Density approach k-medoids	
		Partitioning approach Agnes	
		Partitioning approach OPTICS	
	b)	True or False:	1x8=8
		(i) Database uses current data to take the decision.	
		(ii) OLTP is a major task of DBMS.	
		(iii) OLAP didn't process data analysis and decision making.	
		(iv) The less detailed to more detailed data is retrieve in Roll-up operation.	
		(v) High inter class similarity is not found in good clustering.	
		(vi) High intra class similarity is found in good clustering.	
	65 I I ^{- I}	(vii) Ordinal variables cannot be continuous only.	
		(viii) The summarized part of the cube is called a apex cuboid.	
	c)	Whether or not each of the following activities is a data mining task (Yes/No)	1x6=6
		(i) Dividing the customers of a company according to their gender.	
		(ii) Dividing the customers of a company according to their profitability.	
		(iii) Computing the total sales of a company.	
		(iv) Sorting a student database based on student identification numbers.	
		(v) Predicting the outcomes of tossing a (fair) pair of dice.	
		(vi) Predicting the future stock price of a company using historical records.	
2.	a)	What is the need of data cleaning and data reduction in data-preprocessing?	8
	b)	Apply the Min-max normalization by setting $min = 0$ and $max = 1$ on the	6
		following group of data values 80, 150, 260, 360, 450, and 500.	
	c)	Given price values (in pound) such as 28, 24, 4, 44, 18, 36, 16, 8, 45, 20, 30,	6
		12, 32, 48, 38 and 40. Apply the all binning methods to partition the data.	
- 0			

3.	a)	What is data warehouse?	2
	b)	Discuss the Data matrix and Dissimilarity matrix.	4
	c)	Explain the Binary, Nominal and Ordinal variables.	6
	d)	Find out the three clusters using the k-means algorithm for the given data objects {2, 4, 10, 12, 3, 20, 30, 11, 25}. (Hint k=3 and keep continue till the no change in the formed clusters)	8
4.	8)	Explain the classification and prediction methods?	5
	b)	Describe the Frequent itemsets, Support and Confidence in Association Rule Mining?	7
	c)	A database has five transactions. Let min_sup = 60%. Find all frequent item sets using Apriori. $\begin{array}{c c} \hline TID & Item sets \\ \hline T100 & \{D, G, A, O, N\} \\ \hline T200 & \{B, G, A, O, N\} \\ \hline T300 & \{K, G, A, O, N\} \\ \hline T400 & \{J, G, A, O, N\} \\ \hline \end{array}$	8
5.	Writ	te short notes on the following (<i>any four</i>):	4x5=20
	a)	Data transformation	
	b)	Data Reduction	
	c)	Expected Information (I) for attribute selection measure	
	d)	Bayesian classifier with Bayes theorem (including formula)	
	e)	KDD process	
-	Diff		45-00
6.	Diff	erentiate between the following (<i>any jour</i>):	4x5=20
	a)	Unsupervised and Supervised learning	
	b)	Roll up and drill down	
	c)	Slice and Dice operation	
	d)	DIANA and AGNES	
	e)	Parametric and non-parametric methods in numerosity reduction	