10

2025

WATER RESOURCE ENGINEERING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	What are the different methods available for determining mean rainfall over a	10
		catchment? Central Institute Of Technology	
	b)	Raingauge station X did not function for a part of a month during which a	10
		storm occurred. The storm produced rainfall of 84, 70 and 96 mm at three	
		surrounding stations A, B and C respectively. The normal annual rainfalls at	
		the stations X, A, B and C are 770, 882, 736 and 944 mm respectively.	
		Estimate the missing rainfall at station X.	

- 2. a) Define inconsistency in rain fall data. How inconsistency in rain fall data can 5+5=10 be rectified?
 - b) Describe the relationships between depth, area and duration for a rainfall over an area of a given duration?
- 3. a) How the stream flow measurement of a river can be done by using areavelocity method?
 - b) The following table gives the data obtained by a stream-gauging operation. The rating equation of the current meter is $v = 0.51N_s + 0.03$ m/s where $N_s =$ revolutions per second. Calculate the discharge in the stream.

Distance from bank (m)	0	1.0	3.0	5.0	7.0	9.0	11.0	12.0
Depth(m)	0	1.1	2.0	2.5	2.0	1.7	1.0	0
Revolutions of a current meter kept at 0.6 m depth	0	39	58	112	90	45	30	0

Duration of observation (s)	0	100	100	150	150	100	100	0
-----------------------------	---	-----	-----	-----	-----	-----	-----	---

4. a) Discuss various factors affecting the distribution of runoff.

10

b) What is hydrograph? Explain the different components of a flood hydrograph with the help of a sketch.

2+8=10

5. a) The flood data and base flow in a stream is estimated as shown in the Table below. The catchment area is 600 km². Estimate the rainfall excess.

10

Time in days	0	1	2	3	4	5	6	7	8	9
Total discharge (m ³ /s)	20	63	151	133	90	63	44	29	20	20
Base flow (m ³ /s)	0	41	126	105	62	37	21	80	0	0

b) What are the assumptions made in the Unit Hydrograph Theory? Describe the various factors affecting the flood hydrograph.

3+7=10

6. a) What are the sources of ground water flow? What is the difference between infiltration and percolation?

2+3=5

b) Describe briefly how the water table changes in different conditions?

5

c) Describe the different aquifer properties?

10

