Total number of printed pages-7

53 (CY 201) ENCH

2012 C 2013 (May)

ENGG. CHEMISTRY

Paper : CY 201 Full Marks : 100 Pass Marks : 30

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) What do you mean by Polymerisation? Write the product formed of the reaction

 $\begin{array}{c} CH_2 - CH_2 & \underline{H_2O} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

 $A + B \xrightarrow{-H_2O} C$; where product C is a condensation polymer. 2+1+1+2=6

Contd.

 (b) Write short notes on : Buna-S-rubber and Buna-N-rubber.
 What is the main difference between these two rubbers ?

 (c) Explain the osmotic pressure method of determining the molecular mass a polymer. Draw a plot of reduced osmotic pressure versus concentration of polymer. 3+2=5

(d) How intrinsic viscosity is related to molecular weight polymer? Calculate the approximate concentration of myosin in water which would have a viscosity at $1.5 \cdot [\eta] = 217 cm^3 g^{-1}$. 1+3=4

- (a) What do you mean by pseudofirst order reaction? Distinguish between molecularity and order of a reaction. 2+3=5
 - (b) What is the value of the rate constant, predicted by the Arrhenius equation if T→∞. Is this value physically reasonable? Explain. 2+2=4

(c) Calculate ΔH^{\neq} , ΔG^{\neq} and ΔS^{\neq} for the second order reaction $NO_2(g) + NO_2(g) \rightarrow 2 NO(g) + O_2(g)$ at 500K. Given $A = 2 \cdot 0 \times 10^9 S^{-1}$. The energy of activation is $111K Jmol^{-1}$. 5

53 (CY 201) ENCH/G

What is the expression for pre-exponential (d) factor or Arrhenius constant of the following reaction according to Collission theory ?

$A + B \rightarrow P$

It is found that for the reaction $NO + Cl_2$. $\rightarrow NOCl + Cl$ that $A = 4 \cdot 0 \times 10 L mol^{-1} s^{-1}$ at 298K. Use $\sigma(NO) = 0.42 nm^2$ and $\sigma(Cl_2) = 0.93 nm^2$ estimate the ρ -factor 2+4=6for the reaction.

- (a) What do you mean by degree of freedom? 3. Give the number of degrees (F) of freedom 2+1+1=4of the following systems : (i) water, allowing for its autoprotolysis (ii) aqueous acetic acid
 - Both H_2O and CO_2 can be drawn by one (b) component phase-diagram. But there is a difference in the phase-diagram of H2O and CO2. Why this difference exist explain 2+2+1=5with the phase-diagram.
 - Distinguish between hexagonal closed-(c) packed structure and cubic closed-packed 3 structure.

53 (CY 201) ENCH/G 3

Contd.

- (d) Write short notes on : 3+3=6(i) Hund's rule of maximum multiplicity. (*ii*) Bohr's spectrum of H^3 -atom.
 - Find out the conjugate acid-base pair in (e) the following reaction : 2

 $H_2SO_4 + H_2O \rightleftharpoons H_3O^{\oplus} + HSO_4^{\ominus}$

4 (a) Explain the bimolecular nucleophilic substitution reaction with a suitable example.

Distinguish between SN^1 and SN^2 reaction. 4+2=6

> Name the product formed in the following (b) reaction with reaction mechanism 2+3=5

$$\bigcap_{\substack{N \\ | \\ CH_3}} \xrightarrow{CH_3I} \text{product}$$

(c) Write short notes on : $2 \times 3 = 6$

- (i) Addition Reaction
- (ii) Substitution Reaction

53 (CY 201) ENCH/G

(d) Which can be expected to have the higher dissociation energy? 1½+1½=3

(i) N_2 or N_2^{\oplus} (*ii*) F_2 or F_2^{\oplus}

5. (a) The E.M.F of the standard weston cell written as $Cd(Hg), CdSO_4 \cdot \frac{8}{3}H_2O(S) \| CdSO_4 (sat),$ $Hg_2SO_4(s), Hg$ in which cell reaction is $Cd(Hg) + Hg_2SO_4(S) + \frac{8}{3}H_2O(l) \rightarrow$

 $CdSO_4, \frac{8}{3}H_2O(S) + 2Hg(l)$

is 1.0185V at $25^{\circ}C$. Calculate ΔG° , ΔS° and ΔH° for the cell reaction if $(\partial E^{\circ}/\partial T)_{p}$ for the cell is $5.00 \times 10^{-5} V K^{-1}$.

(b) Calculate the ionic strength of

(i) 0.15 molal KCl solution

- (ii) a solution which is $0.1 \mod 1 \mod 1$ molal in KCl and $0.2 \mod 1 \mod 1 = K_2SO_4$. 2+3=5
- (c) What is the Debye-Huckel limiting law? Calculate the mean activity coefficient $(\gamma \pm)$ of *NaCl* at a molality 0.01. 2+3=5

53 (CY 201) ENCH/G

Contd.

(d) Write short notes on :

3+2=5

- (i) Glass Electrode
- (ii) Calomel Electrode.
- 6. (a) Explain the Instrumentation of Nuclear Magnetic Resonance Spectrometer. At a magnetic flux density 1.65T, the frequency of separation between protons in benzene and tetramethyl silane is 510.5Hz. What is the chemical shift in δ and τ -scale? 5+5=10
 - (b) What is the ratio of the number of proton spins in the lower state to the number in the higher state in a magnetic field of 2T at temperature 25°C?
 What is the increasing order of chemical shift of the following?
 CH₃I, CH₃Br, CH₃Cl, CH₃F Explain the reason behind this.

5+3+2=10

7. (a) For the displacement reaction, $\left[Co(NH_3)_5Cl\right]^{2+} + H_2O \rightarrow \left[Co(NH_3)_5(H_2O)\right]^{3+} + Cl^{\Theta}$

> The rate constant is given by $ln[k/(min^{-1})] = \frac{-1106 \cdot 7k}{T} + 31 \cdot 33$ •Evaluate k, E and A for the chemical reaction at 25°C.

- (b) Write short notes on : $2 \times 4 = 8$
 - (i) Number-average molecular weight
 - (ii) Weight-average molecular weight
 - (iii) Z-average molecular weight
 - (iv) Viscosity-average molecular weight.
- (c) A solution contains equal number of particles with molar masses $10,000 \text{ gmol}^{-1}$ and $20,000 \text{ gmol}^{-1}$, respectively. Calculate \overline{Mn} and \overline{Mm} . 2+3=5
- (d) Define phase, components and degree of freedom with a suitable example.
 2

53 (CY 201) ENCH/G

7

300